
CMSC 313 Lecture 05

• Recap i386 Basic Architecture

• Second assembly program: “toupper.asm”
• EFLAGS Register & Branching Instructions

• Project 1

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Recap i386 Basic Architecture

• Registers are storage units inside the CPU.

• Registers are much faster than memory.
• 8 General purpose registers in i386:

EAX, EBX, ECX, EDX, ESI, EDI, EBP, ESP

subparts of EAX, EBX, ECX and EDX have special names

• The instruction pointer (EIP) points to machine code
to be executed.

• Typically, data moves from memory to registers,
processed, moves from registers back to memory.

• Different addressing modes used.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-3

BASIC EXECUTION ENVIRONMENT

Figure 3-1. IA-32 Basic Execution Environment

0

232 -1

Eight 32-bit

32-bits

32-bits

General-Purpose Registers

Segment Registers

EFLAGS Register

EIP (Instruction Pointer Register)

Address Space*

*The address space can be

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

flat or segmented. Using

XMM RegistersEight 128-bit
Registers

16-bits Control Register

16-bits Status Register

48-bits FPU Instruction Pointer Register

48-bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

SSE and SSE2 Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16-bits Tag Register

the physical address
extension mechanism, a
physical address space of
236 -1 can be addressed.

3-10

BASIC EXECUTION ENVIRONMENT

3.4.2. Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment in memory. To access a particular segment
in memory, the segment selector for that segment must be present in the appropriate segment
register.

When writing application code, programmers generally create segment selectors with assembler
directives and symbols. The assembler and other tools then create the actual segment selector
values associated with these directives and symbols. If writing system code, programmers may
need to create segment selectors directly. (A detailed description of the segment-selector data
structure is given in Chapter 3, Protected-Mode Memory Management, of the Intel Architecture
Software Developer’s Manual, Volume 3.)

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, the
segment registers are loaded with segment selectors that point to overlapping segments, each of
which begins at address 0 of the linear address space (as shown in Figure 3-5). These overlap-
ping segments then comprise the linear address space for the program. (Typically, two overlap-
ping segments are defined: one for code and another for data and stacks. The CS segment
register points to the code segment and all the other segment registers point to the data and stack
segment.)

When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register points to a different segment within the
linear address space (as shown in Figure 3-6). At any time, a program can thus access up to six
segments in the linear address space. To access a segment not pointed to by one of the segment
registers, a program must first load the segment selector for the segment to be accessed into a
segment register.

Figure 3-4. Alternate General-Purpose Register Names

071531 16 8

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

16-bit

AX

DX

CX

BX

32-bit

EAX

EBX

ECX

EDX

EBP

ESI

ESP

General-Purpose Registers

EDI

toupper.asm

• Prompt for user input.

• Use Linux system call to get user input.

• Scan each character of user input and convert all
lower case characters to upper case.

• How to:
work with 8-bit data

specify ASCII constant

compare values

loop control

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

 1 ; File: toupper.asm last updated 09/26/2001
 2 ;
 3 ; Convert user input to upper case.
 4 ;
 5 ; Assemble using NASM: nasm -f elf toupper.asm
 6 ; Link with ld: ld toupper.o
 7 ;
 8
 9 %define STDIN 0
 10 %define STDOUT 1
 11 %define SYSCALL_EXIT 1
 12 %define SYSCALL_READ 3
 13 %define SYSCALL_WRITE 4
 14 %define BUFLEN 256
 15
 16
 17 SECTION .data ; initialized data section
 18
 19 msg1: db "Enter string: " ; user prompt
 20 len1: equ $-msg1 ; length of first message
 21
 22 msg2: db "Original: " ; original string label
 23 len2: equ $-msg2 ; length of second message
 24
 25 msg3: db "Convert: " ; converted string label
 26 len3: equ $-msg3
 27
 28 msg4: db 10, "Read error", 10 ; error message
 29 len4: equ $-msg4
 30
 31
 32 SECTION .bss ; uninitialized data section
 33 buf: resb BUFLEN ; buffer for read
 34 newstr: resb BUFLEN ; converted string
 35 rlen: resb 4 ; length
 36
 37
 38 SECTION .text ; Code section.
 39 global _start ; let loader see entry point
 40
 41 _start: nop ; Entry point.
 42 start: ; address for gdb
 43
 44 ; prompt user for input
 45 ;
 46 mov eax, SYSCALL_WRITE ; write function
 47 mov ebx, STDOUT ; Arg1: file descriptor
 48 mov ecx, msg1 ; Arg2: addr of message
 49 mov edx, len1 ; Arg3: length of message
 50 int 080h ; ask kernel to write
 51

 52 ; read user input
 53 ;
 54 mov eax, SYSCALL_READ ; read function
 55 mov ebx, STDIN ; Arg 1: file descriptor
 56 mov ecx, buf ; Arg 2: address of buffer
 57 mov edx, BUFLEN ; Arg 3: buffer length
 58 int 080h
 59
 60 ; error check
 61 ;
 62 mov [rlen], eax ; save length of string read
 63 cmp eax, 0 ; check if any chars read
 64 jg read_OK ; >0 chars read = OK
 65 mov eax, SYSCALL_WRITE ; ow print error mesg
 66 mov ebx, STDOUT
 67 mov ecx, msg4
 68 mov edx, len4
 69 int 080h
 70 jmp exit ; skip over rest
 71 read_OK:
 72
 73
 74 ; Loop for upper case conversion
 75 ; assuming rlen > 0
 76 ;
 77 L1_init:
 78 mov ecx, [rlen] ; initialize count
 79 mov esi, buf ; point to start of buffer
 80 mov edi, newstr ; point to start of new string
 81
 82 L1_top:
 83 mov al, [esi] ; get a character
 84 inc esi ; update source pointer
 85 cmp al, 'a' ; less than 'a'?
 86 jb L1_cont
 87 cmp al, 'z' ; more than 'z'?
 88 ja L1_cont
 89 and al, 11011111b ; convert to uppercase
 90
 91 L1_cont:
 92 mov [edi], al ; store char in new string
 93 inc edi ; update dest pointer
 94 dec ecx ; update char count
 95 jnz L1_top ; loop to top if more chars
 96 L1_end:
 97
 98

 99 ; print out user input for feedback
 100 ;
 101 mov eax, SYSCALL_WRITE ; write message
 102 mov ebx, STDOUT
 103 mov ecx, msg2
 104 mov edx, len2
 105 int 080h
 106
 107 mov eax, SYSCALL_WRITE ; write user input
 108 mov ebx, STDOUT
 109 mov ecx, buf
 110 mov edx, [rlen]
 111 int 080h
 112
 113 ; print out converted string
 114 ;
 115 mov EAX, SYSCALL_WRITE ; write message
 116 mov EBX, STDOUT
 117 mov ECX, msg3
 118 mov EDX, len3
 119 int 080h
 120
 121 mov EAX, SYSCALL_WRITE ; write out string
 122 mov EBX, STDOUT
 123 mov ECX, newstr
 124 mov EDX, [rlen]
 125 int 080h
 126
 127
 128 ; final exit
 129 ;
 130 exit: mov EAX, SYSCALL_EXIT ; exit function
 131 mov EBX, 0 ; exit code, 0=normal
 132 int 080h ; ask kernel to take over

Read The Friendly Manual (RTFM)

• Best Source: Intel Instruction Set Reference
Available off the course web page in PDF.

Download it, you’ll need it.

• Next Best Source: Appendix A NASM Doc.
• Questions to ask:

What is the instruction’s basic function? (e.g., adds two numbers)

Which addressing modes are supported? (e.g., register to register)

What side effects does the instruction have? (e.g. OF modified)

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Branching Instructions

• JMP = unconditional jump

• Conditional jumps use the flags to decide whether
to jump to the given label or to continue.

• The flags were modified by previous arithmetic
instructions or by a compare (CMP) instruction.

• The instruction
CMP op1, op2

computes the unsigned and two’s complement
subtraction op1 - op2 and modifies the flags. The
contents of op1 are not affected.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Example of CMP instruction

• Suppose AL contains 254. After the instruction:

CMP AL, 17

CF = 0, OF = 0, SF = 1 and ZF = 0.

• A JA (jump above) instruction would jump.

• A JG (jump greater than) instruction wouldn’t jump.

• Both signed and unsigned comparisons use the
same CMP instruction.

• Signed and unsigned jump instructions interpret the
flags differently.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

7-19

PROGRAMMING WITH THE GENERAL-PURPOSE INSTRUCTIONS

The destination operand specifies a relative address (a signed offset with respect to the address
in the EIP register) that points to an instruction in the current code segment. The Jcc instructions
do not support far transfers; however, far transfers can be accomplished with a combination of
a Jcc and a JMP instruction (see “Jcc—Jump if Condition Is Met” in Chapter 3 of the Intel Archi-
tecture Software Developer’s Manual, Volume 2).

Table 7-4 shows the mnemonics for the Jcc instructions and the conditions being tested for each
instruction. The condition code mnemonics are appended to the letter “J” to form the mnemonic
for a Jcc instruction. The instructions are divided into two groups: unsigned and signed condi-
tional jumps.

Table 7-4. Conditional Jump Instructions

Instruction Mnemonic Condition (Flag States) Description

Unsigned Conditional Jumps

 JA/JNBE (CF or ZF)=0 Above/not below or equal

 JAE/JNB CF=0 Above or equal/not below

 JB/JNAE CF=1 Below/not above or equal

 JBE/JNA (CF or ZF)=1 Below or equal/not above

 JC CF=1 Carry

 JE/JZ ZF=1 Equal/zero

 JNC CF=0 Not carry

 JNE/JNZ ZF=0 Not equal/not zero

 JNP/JPO PF=0 Not parity/parity odd

 JP/JPE PF=1 Parity/parity even

 JCXZ CX=0 Register CX is zero

 JECXZ ECX=0 Register ECX is zero

Signed Conditional Jumps

 JG/JNLE ((SF xor OF) or ZF) =0 Greater/not less or equal

 JGE/JNL (SF xor OF)=0 Greater or equal/not less

 JL/JNGE (SF xor OF)=1 Less/not greater or equal

 JLE/JNG ((SF xor OF) or ZF)=1 Less or equal/not greater

 JNO OF=0 Not overflow

 JNS SF=0 Not sign (non-negative)

 JO OF=1 Overflow

 JS SF=1 Sign (negative)

CMSC 313, Computer Organization & Assembly Language Programming Fall 2004

Project 1: ROT13 Due Thursday, September 23, 2004

Objective

This project is a finger-warming exercise to make sure that everyone can compile an assembly language
program, run it through the debugger and submit the requisite files using the systems in place for the
programming projects.

Background

The ROT13 format is used on USENET newsgroups to mask potentially offensive postings, movie
spoilers, etc. The idea is that readers who think they might be offended by a controversial remark will simply
not “decode” the posting and thus not be offended. Many news readers and email clients support ROT13.

The encoding is very simple. The characters ‘a’–‘m’ are mapped to ‘n’–‘z’ and vice versa. Upper case
letters are transformed analogously. All other characters (e.g., digits and punctuation marks) are left alone.
For example, “There was a man from Nantucket” becomes “Gurer jnf n zna sebz Anaghpxrg” after ROT13
transformation. To decode a message in ROT13, you simply apply the ROT13 transformation again.

Assignment

For this project, you must do the following:

1. Write an assembly language program that prompts the user for an input string and prints out the
ROT13 encoding of the the string. A good starting point for your project is the program
toupper.asm (shown in class) which converts lower case characters in the user’s input string to
upper case. The source code is available on the GL file system at:

/afs/umbc.edu/users/c/h/chang/pub/cs313/

2. Using the UNIX script command, record some sample runs of your program and a debugging
session using gdb. In this session, you should fully exercise the debugger. You must set several
breakpoints, single step through some instructions, use the automatic display function and examine
the contents of memory before and after processing. The script command is initiated by typing
script at the UNIX prompt. This puts you in a new UNIX shell which records every character
typed or printed to the screen. You exit from this shell by typing exit at the UNIX prompt. A file
named typescript is placed in the current directory. You must exit from the script command
before submitting your project. Also, remember not to record yourself editing your programs — this
makes the typescript file very large.

Turning in your program

Use the UNIX submit command on the GL system to turn in your project. You should submit two files:
1) the modified assembly language program and 2) the typescript file of your debugging session. The class
name for submit is cs313_0101, the project name is proj1. The UNIX command to do this should look
something like:

submit cs313_0101 proj1 rot13.asm typescript

Notes

Additional help on running NASM, gdb and making system calls in Linux are available on the assembly
language programming web page for this course:

<http://www.csee.umbc.edu/~chang/cs313.f04/assembly.shtml>

Recall that the project policy states that programming assignments must be the result of individual
effort. You are not allowed to work together. Also, your projects will be graded on five criteria: correctness,
design, style, documentation and efficiency. So, it is not sufficient to turn in programs that assemble and run.
Assembly language programming can be a messy affair — neatness counts.

