CMSC 313 Lecture 04

e Homework 2

* |A-32 Basic Execution Environment

e |A-32 General Purpose Registers

e Moore’s “Law”

e Evolution of the Pentium Chip

e “"Hello World” in Linux Assembly Language
e Addressing Modes

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313 Computer Organization & Assembly Language Programming Fall 2004
Homework 2 Section 0101

Due: Tuesday, September 21, 2004

Instructions: For the following questions, show all of your work. It is not sufficient to
provide the answers.

Exercise 1. Convert the following decimal numbers to hexadecimal representations of
16-bit two’s complement numbers.

a. 1293
b. 31249
c. -24752

d. -4096

Exercise 2. Convert the following 16-bit two’s complement numbers in hexadecimal rep-
resentation to decimal.

a. FFF56
b. 7CDY46
c. 00BByg
d. 800016

Exercise 3. Write the following decimal numbers in IEEE-754 single precision format.
Give your answers in binary.

a. 14.125
b. 3.14159
c. —58.375
d. —4096

Exercise 4. Write the decimal equivalents for these IEEE-754 single precision floating
point numbers given in binary.

a. 0 10000001 01100000000000000000000
b. 1 10000001 00010000000000000000000
c. 1 10000000 00000000000000000000000

d. 0 00000001 01011000000000000000000

((1-6 Chapter 1: Introduction \
The System Bus Model

« A refinement of the von Neumann model, the system bus model
has a CPU (ALU and control), memory, and an input/output unit.

« Communication among components is handled by a shared path-
way called the system bus , which is made up of the data bus, the
address bus, and the control bus. There is also a power bus, and
some architectures may also have a separate 1/O bus.

CPU
(ALU, Memory Input and
Registers, Output (1/O)
and Control)

Data Bus

Address Bus

System Bus

Control Bus

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. HeuringJ

/ 4-9 Chapter 4: The Instruction Set Architecture \

The Fetch-Execute Cycle

» The steps that the control unit carries out in executing a program
are:

(1) Fetch the next instruction to be executed from memory.
(2) Decode the opcode.

(3) Read operand(s) from main memory, if any.

(4) Execute the instruction and store results.

(5) Go to step 1.

This is known as the fetch-execute cycle .

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

intel.

BASIC EXECUTION ENVIRONMENT

Basic Program Execution Registers Address Space*
2%2 1
Eight 32-bit General-Purpose Registers
Registers
Six 16-bit .
Registers Segment Registers
| 32-bits | EFLAGS Register
| 32-bits | EIP (Instruction Pointer Register)
FPU Registers
Eight 80-bit Floating-Point
Registers Data Registers 0
*The address space can be
16-bits Control Register ?ﬁé grhf:%ge:ézfésl‘fmg
16-bits Status Register extension mechanism, a
hysical add f
[] Opcode Register (11-bits)
| 48-bits | FPU Instruction Pointer Register
| 48-bits | FPU Data (Operand) Pointer Register

MMX Registers

Eight 64-bit

Registers MMX Registers

SSE and SSE2 Registers

Eight 128-bit
Registers

[32-bits |

XMM Registers

MXCSR Register

Figure 3-1. 1A-32 Basic Execution Environment

General-Purpose Registers

31 1615 87 0 16-bit 32-bit
AH AL AX EAX
BH BL BX EBX
CH CL CX ECX
DH DL DX EDX
BP EBP
SI ESI
DI EDI
SP ESP

Figure 3-4. Alternate General-Purpose Register Names

EAX—Accumulator for operands and results data.
EBX—Pointer to data in the DS segment.
ECX—Counter for string and loop operations.
EDX—I/O pointer.

ESI—Pointer to data in the segment pointed to by the DS register; source pointer for string
operations.9

EDI—Pointer to data (or destination) in the segment pointed to by the ES register;
destination pointer for string operations.

ESP—Stack pointer (in the SS segment).
EBP—Pointer to data on the stack (in the SS segment).

Table 2-2. Key Features of Previous Generations of IA-32 Processors

Max. Clock Ext. Max.
Date Frequency | Transis Data | Extern.
Intro- at Intro- -tors Register Bus Addr.
Intel Processor duced duction per Die Sizes? Size? Space Caches
8086 1978 8 MHz 29 K 16 GP 16 1 MB | None
Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB | Note 3
Intel386 DX Processor 1985 20 MHz 275 K 32GP 32 4GB | Note 3
Intel486 DX Processor 1989 25 MHz 1.2M 32GP 32 4GB | L1:8KB
80 FPU
Pentium Processor 1993 60 MHz 31M 32GP 64 4GB | L1:16 KB
80 FPU
Pentium Pro Processor | 1995 200 MHz 55M 32GP 64 64GB | L1:16 KB
80 FPU L2: 256 KB
or 512 KB
Pentium II Processor 1997 266 MHz 7M 32GP 64 64GB | L1:32KB
80 FPU L2: 256 KB
64 MMX or 512 KB
Pentium Il Processor 1999 500 MHz 82M 32GP 64 64GB | L1:32KB
80 FPU L2: 512 KB
64 MMX
128
XMM
Pentium Ill and 1999 700 MHz 28 M 32GP 64 64 GB | L1:32KB
Pentium Ill Xeon 80 FPU L2: 256KB
Processors 64 MMX
128
XMM

NOTES:

1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose
(GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors.

2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

Table 2-1. Key Features of Most Recent |A-32 Processors

Clock Tran- System Max.
Date Frequency | sistors Bus Extern.

Intel Intro- | Microarhi- at Intro- | Per Die | Register Band- Addr. On-Die
Processor | duced tecture duction Sizes! width Space Caches?
Pentium 4 2000 | Intel 1.50 GHz 42 M GP: 32 3.2 64 GB | 12K pop
Processor NetBurst FPU: 80 GB/s Execution

Microarchi- MMX: 64 Trace
tecture XMM: 128 Cache;
8KB L1;
256-KB
L2
Intel Xeon 2001 | Intel 1.70 GHz 42 M GP: 32 3.2 64 GB | 12K pop
Processor NetBurst FPU: 80 GB/s Trace
Microarchi- MMX: 64 Cache;
tecture XMM: 128 8-KB L1;
256-KB
L2
Intel Xeon 2002 | Intel 2.20 GHz 55 M GP: 32 3.2 64 GB | 12K pop
Processor NetBurst FPU: 80 GB/s Trace
Microarchi- MMX: 64 Cache;
tecture; XMM: 128 8-KB L1;
Hyper- 512-KB
Threading L2
Technology
Intel Xeon 2002 | Intel 1.60 GHz 108 M GP: 32 3.2 64 GB | 12K pop
Processor NetBurst FPU: 80 GB/s Trace
MP Microarchi- MMX: 64 Cache;
tecture; XMM: 128 8-KB L1;
Hyper- 256-KB
Threading L2;
Technology 1-MB L3
Intel 2002 | Intel 3.06 GHz 55 M GP: 32 42 64 GB | 12K pop
Pentium 4 NetBurst FPU: 80 GB/s Execution
Processor Microarchi- MMX: 64 Trace
with Hyper- tecture; XMM: 128 Cache;
Threading Hyper- 8-KB L1;
Technology Threading 512-KB
Technology L2
Intel 2003 | Intel 1.60 GHz 77M GP: 32 3.2 4GB | L1:64KB
Pentium M Pentium M FPU: 80 GB/s L2:1 MB
Processor Processor MMX: 64

XMM: 128

InteI@ INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE

Table 2-1. Key Features of Most Recent IA-32 Processors (Contd.)

Clock Tran- System Max.
Date Frequency | sistors Bus Extern.

Intel Intro- | Microarhi- at Intro- | Per Die | Register Band- Addr. On-Die
Processor | duced tecture duction Sizes’ width Space Caches?
Intel 2004 | Intel 3.40GHz | 125M GP: 32 6.4 64 GB | 12K pop
Pentium 4 NetBurst FPU: 80 GB/s Execution
Processor Microarchi- MMX: 64 Trace
Supporting tecture; XMM: 128 Cache;
Hyper- Hyper- 16 KB L1,
Threading Threading 1 MB L2
Technology Technology
at 90 nm
process
Intel 2004 | Intel 200GHz | 140M GP: 32 3.2 4GB |[L1:64KB
Pentium M Pentium M FPU: 80 GB/s L2: 2MB
Processor Processor MMX: 64
755° XMM: 128

NOTES

1. The register size and external data bus size are given in bits.

2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2. The size of L1
includes the first-level data cache and the instruction cache where applicable, but does not include the
trace cache.

3. Intel processor numbers are not a measure of performance. Processor numbers differentiate features
within each processor family, not across different processor families. See http://www.intel.com/prod-
ucts/processor_number for details.

Moore’s “Law”

e |n the mid-1960’s, Intel Chairman of the Board
Gordon Moore observed that “the number of
transistors that would be incorporated on a silicon
die would double every 18 months for the next
several years.”

e His prediction has continued to hold true.
e Perhaps a self-fulfilling prophecy?

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

“Hello World” in Linux Assembly

e Use your favorite UNIX editor (vi, emacs, pico, ...)

e Assemble using NASM on gl.umbc.edu
nasm -f elf hello.asm

e NASM documentation is on-line.

* Need to “load” the object file
Id hello.o

e Execute
a.out

e CMSC 121 Introduction to UNIX

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

|
OQuwWwWooONOCULTPE, WN -

11
12
13
14
15
16
17
18
19
20

’

; Linux style "fast call".

’

msg:
len:

_start:

SECTION .data

db "Hello, world",
equ $-msg
SECTION .text
global _start
nop

mov edx, len
mov ecx, msg
mov ebx, 1
mov eax, 4
int 080H

mov ebx, 0
mov eax, 1
int O806H

Assemble using

10

NASM

Data section

; The string to print.

;: Code section.

Entry point.

; Arg 3: length of string.
; Arg 2: pointer to string.
; Arg 1: file descriptor.
; Write.

; exit code, O=normal

Exit.

: Call kernel.

30x86 Addressing Modes

We want to store the value 1734h.

The value 1734h may be located in a register
Or 1IN Memory.

The location in memory might be specitied
by the code, by a register, ...

Assembly language syntax for MOV

MOV DEST, SOURCE

Addressing Modes Code

EAX
EBX
ECX
EDX
EBP
ESI

EDI

ESP

Data

Register from Register

MOV EAX, ECX

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI

EDI

ESP

08A94068

Register from Register Indirect

MOV EAX, [ECX]

Code

Data

Addressing Modes Code

EP ——>| MOV...
08A94068

EAX
EBX
ECX
EDX
EBP
ESI

EDI

ESP

Register from Memory
MOV EAX, [08 A94068]
MOV EAX, [Xx]

Addressing Modes Code

MOV...
EBX

ECX
EDX
EBP
ESI
EDI

ESP Data

Register from Immediate

MOV EAX, 1734

Addressing Modes Code

EAX| 08A94068

EBX
ECX
EDX
EBP
ESI

EDI

ESP

Register Indirect from Immediate

MOV [EAX], DWORD 1734

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI

EDI

ESP

Memory from Immediate

MOV [08A94068], DWORD 1734

MOV [x], DWORD 1734

EIP —)

MOV...

08A94068

Code

Notes on Addressing Modes

More complicated addressing modes later:

MOV EAX, [ESI+4*ECX+12]

Figures not drawn to scale. Constants 1734h
and 08 A94068h take 4 bytes (little endian).

Some addressing modes are not supported
by some operations.

Labels represent addresses not contents of
memory.

Next Time

e Overview of i386 instruction set.
e Arithmetic instructions, logical instructions.

* EFLAGS register

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

