CMSC 313 Lecture 04

- Homework 2
- IA-32 Basic Execution Environment
- IA-32 General Purpose Registers
- Moore's "Law"
- Evolution of the Pentium Chip
- "Hello World" in Linux Assembly Language
- Addressing Modes

Due: Tuesday, September 21, 2004

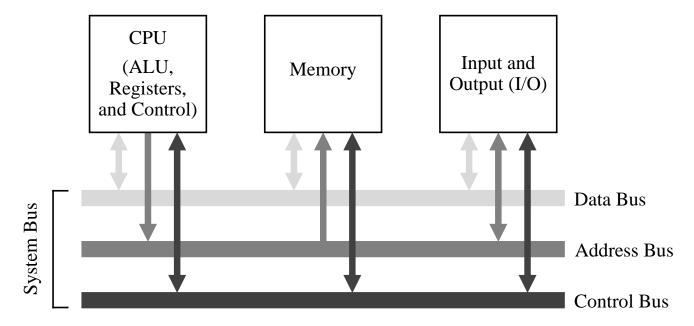
Instructions: For the following questions, *show all of your work*. It is not sufficient to provide the answers.

Exercise 1. Convert the following decimal numbers to hexadecimal representations of 16-bit two's complement numbers.

- a. 1293
- b. 31249
- c. -24752
- d. -4096

Exercise 2. Convert the following 16-bit two's complement numbers in hexadecimal representation to decimal.

- a. FFF5₁₆
- b. $7CD9_{16}$
- c. $00BB_{16}$
- d. 8000₁₆


Exercise 3. Write the following decimal numbers in IEEE-754 single precision format. Give your answers in binary.

- a. 14.125
- b. 3.14159
- c. -58.375
- d. -4096

Exercise 4. Write the decimal equivalents for these IEEE-754 single precision floating point numbers given in binary.

The System Bus Model

- A refinement of the von Neumann model, the system bus model has a CPU (ALU and control), memory, and an input/output unit.
- Communication among components is handled by a shared pathway called the system bus, which is made up of the data bus, the address bus, and the control bus. There is also a power bus, and some architectures may also have a separate I/O bus.

The Fetch-Execute Cycle

- The steps that the control unit carries out in executing a program are:
 - (1) Fetch the next instruction to be executed from memory.
 - (2) Decode the opcode.
 - (3) Read operand(s) from main memory, if any.
 - (4) Execute the instruction and store results.
 - (5) Go to step 1.

This is known as the fetch-execute cycle.

intel_®

BASIC EXECUTION ENVIRONMENT

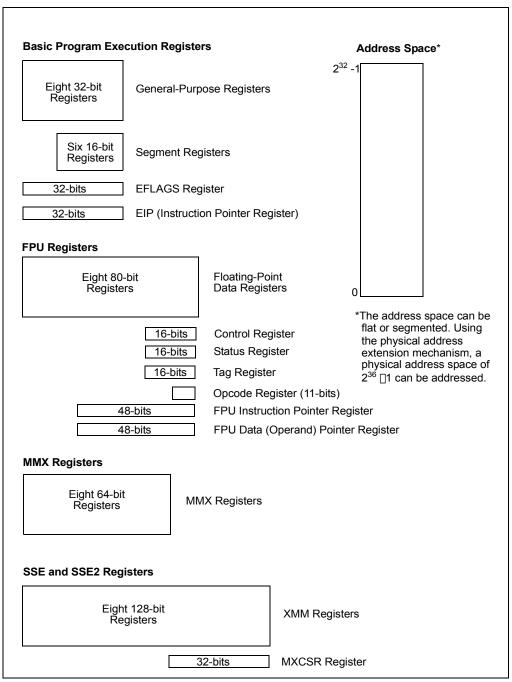


Figure 3-1. IA-32 Basic Execution Environment

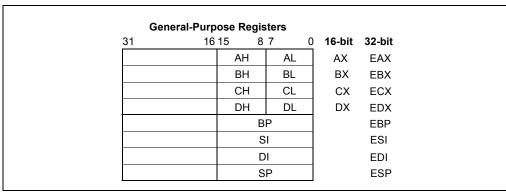


Figure 3-4. Alternate General-Purpose Register Names

- EBX—Pointer to data in the DS segment.
 ECX—Counter for string and loop operations.
 EDX—I/O pointer.
 - ESI—Pointer to data in the segment pointed to by the DS register; source pointer for string operations.9
 EDI—Pointer to data (or destination) in the segment pointed to by the ES register;
 - destination pointer for string operations.
 - ESP—Stack pointer (in the SS segment).
 EBP—Pointer to data on the stack (in the SS segment).

EAX—Accumulator for operands and results data.

Table 2-2. Key Features of Previous Generations of IA-32 Processors

Intel Processor	Date Intro- duced	Max. Clock Frequency at Intro- duction	Transis -tors per Die	Register Sizes ¹	Ext. Data Bus Size ²	Max. Extern. Addr. Space	Caches
8086	1978	8 MHz	29 K	16 GP	16	1 MB	None
Intel 286	1982	12.5 MHz	134 K	16 GP	16	16 MB	Note 3
Intel386 DX Processor	1985	20 MHz	275 K	32 GP	32	4 GB	Note 3
Intel486 DX Processor	1989	25 MHz	1.2 M	32 GP 80 FPU	32	4 GB	L1: 8 KB
Pentium Processor	1993	60 MHz	3.1 M	32 GP 80 FPU	64	4 GB	L1:16 KB
Pentium Pro Processor	1995	200 MHz	5.5 M	32 GP 80 FPU	64	64 GB	L1: 16 KB L2: 256 KB or 512 KB
Pentium II Processor	1997	266 MHz	7 M	32 GP 80 FPU 64 MMX	64	64 GB	L1: 32 KB L2: 256 KB or 512 KB
Pentium III Processor	1999	500 MHz	8.2 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	L1: 32 KB L2: 512 KB
Pentium III and Pentium III Xeon Processors	1999	700 MHz	28 M	32 GP 80 FPU 64 MMX 128 XMM	64	64 GB	L1: 32KB L2: 256KB

NOTES:

- 1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose (GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors.
- 2. Internal data paths are 2 to 4 times wider than the external data bus for each processor.

Table 2-1. Key Features of Most Recent IA-32 Processors

Intel Processor	Date Intro- duced	Microarhi- tecture	Clock Frequency at Intro- duction	Tran- sistors Per Die	Register Sizes ¹	System Bus Band- width	Max. Extern. Addr. Space	On-Die Caches ²
Pentium 4 Processor	2000	Intel NetBurst Microarchi- tecture	1.50 GHz	42 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	64 GB	12K µop Execution Trace Cache; 8KB L1; 256-KB L2
Intel Xeon Processor	2001	Intel NetBurst Microarchi- tecture	1.70 GHz	42 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	64 GB	12K µop Trace Cache; 8-KB L1; 256-KB L2
Intel Xeon Processor	2002	Intel NetBurst Microarchi- tecture; Hyper- Threading Technology	2.20 GHz	55 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	64 GB	12K µop Trace Cache; 8-KB L1; 512-KB L2
Intel Xeon Processor MP	2002	Intel NetBurst Microarchitecture; Hyper- Threading Technology	1.60 GHz	108 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	64 GB	12K µop Trace Cache; 8-KB L1; 256-KB L2; 1-MB L3
Intel Pentium 4 Processor with Hyper- Threading Technology	2002	Intel NetBurst Microarchi- tecture; Hyper- Threading Technology	3.06 GHz	55 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	4.2 GB/s	64 GB	12K µop Execution Trace Cache; 8-KB L1; 512-KB L2
Intel Pentium M Processor	2003	Intel Pentium M Processor	1.60 GHz	77 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	4 GB	L1: 64 KB L2: 1 MB

Table 2-1. Key Features of Most Recent IA-32 Processors (Contd.)

Intel Processor	Date Intro- duced	Microarhi- tecture	Clock Frequency at Intro- duction	Tran- sistors Per Die	Register Sizes ¹	System Bus Band- width	Max. Extern. Addr. Space	On-Die Caches ²
Intel Pentium 4 Processor Supporting Hyper- Threading Technology at 90 nm process	2004	Intel NetBurst Microarchitecture; Hyper- Threading Technology	3.40 GHz	125 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	6.4 GB/s	64 GB	12K µop Execution Trace Cache; 16 KB L1; 1 MB L2
Intel Pentium M Processor 755 ³	2004	Intel Pentium M Processor	2.00 GHz	140 M	GP: 32 FPU: 80 MMX: 64 XMM: 128	3.2 GB/s	4 GB	L1: 64 KB L2: 2MB

NOTES

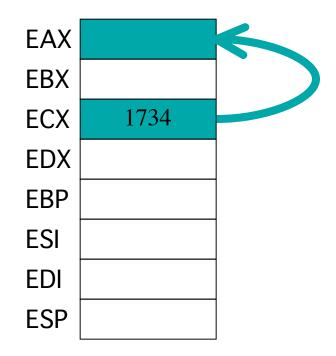
- 1. The register size and external data bus size are given in bits.
- First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2. The size of L1 includes the first-level data cache and the instruction cache where applicable, but does not include the trace cache.
- Intel processor numbers are not a measure of performance. Processor numbers differentiate features
 within each processor family, not across different processor families. See http://www.intel.com/prod-ucts/processor number for details.

Moore's "Law"

- In the mid-1960's, Intel Chairman of the Board Gordon Moore observed that "the number of transistors that would be incorporated on a silicon die would double every 18 months for the next several years."
- His prediction has continued to hold true.
- Perhaps a self-fulfilling prophecy?

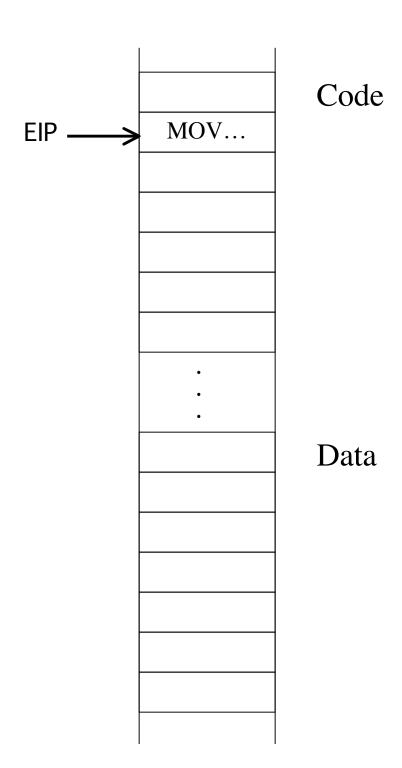
"Hello World" in Linux Assembly

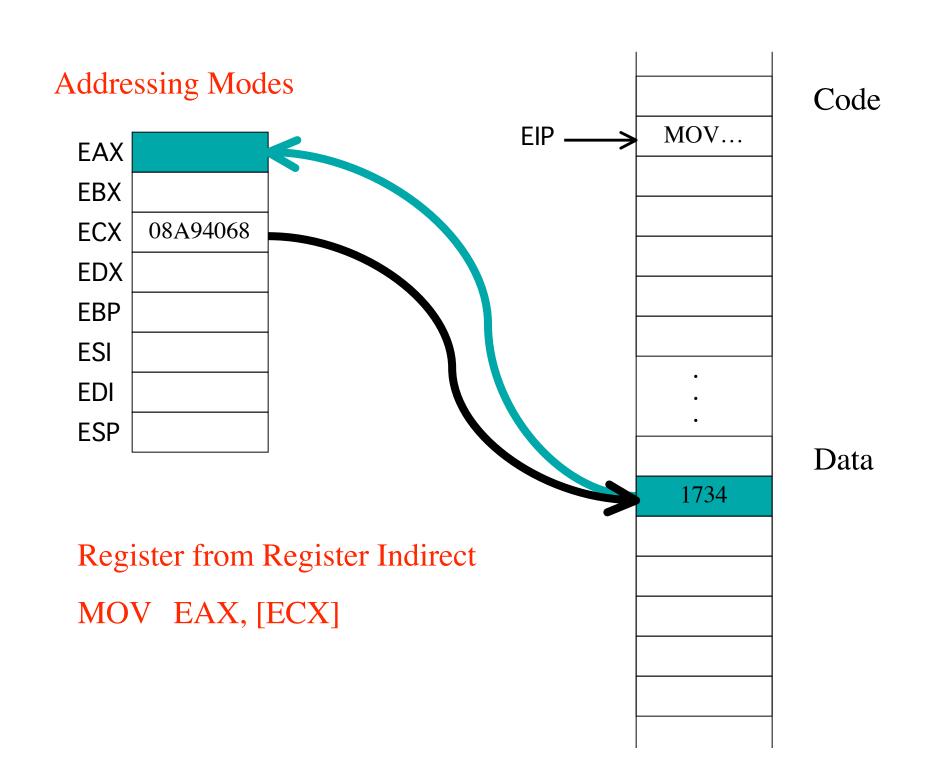
- Use your favorite UNIX editor (vi, emacs, pico, ...)
- Assemble using NASM on gl.umbc.edu
 nasm -f elf hello.asm
- NASM documentation is on-line.
- Need to "load" the object file
 Id hello.o
- Execute a.out
- CMSC 121 Introduction to UNIX

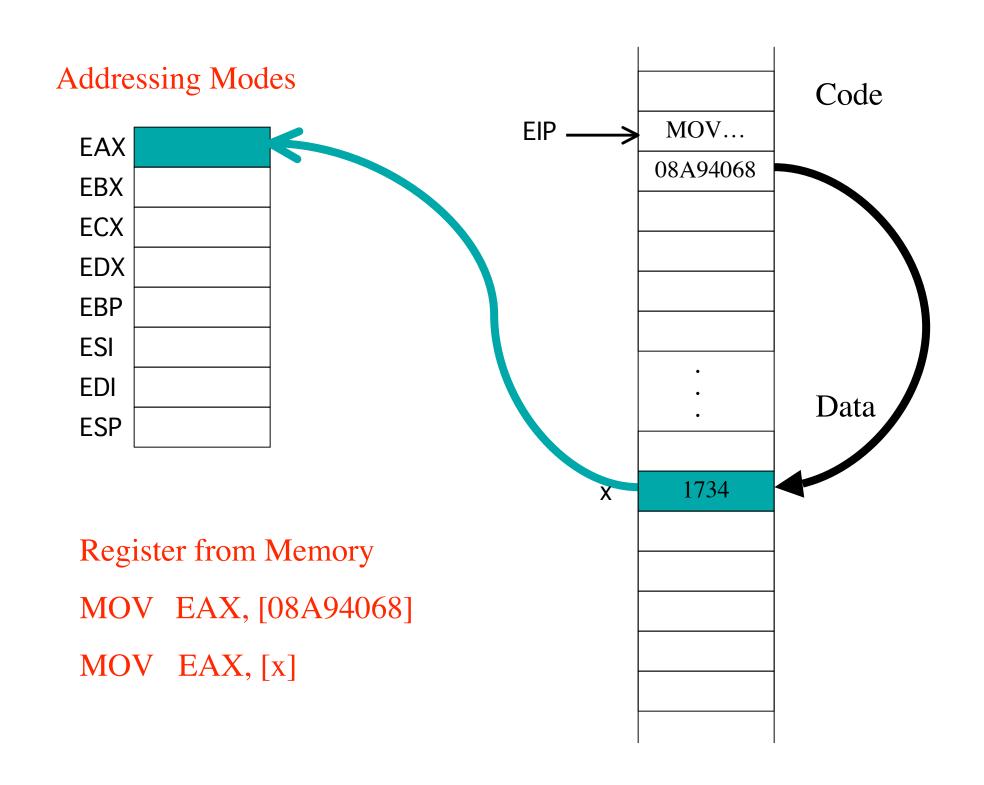

```
1
     ; Linux style "fast call". Assemble using NASM
2
3
4
             SECTION .data
                                             ; Data section
5
6
            db "Hello, world", 10
                                             ; The string to print.
    msg:
7
    len:
             equ $-msg
8
             SECTION .text
9
                                             ; Code section.
             global _start
10
                                             ; Entry point.
11
    _start: nop
                     edx, len
                                             ; Arg 3: length of string.
12
             mov
                                             ; Arg 2: pointer to string.
13
             mov
                     ecx, msg
                                             ; Arg 1: file descriptor.
14
                     ebx, 1
             mov
15
                     eax, 4
                                              ; Write.
             mov
16
                     080H
             int
17
                     ebx, 0
                                             ; exit code, 0=normal
18
             mov
19
                     eax, 1
                                             ; Exit.
             mov
20
             int
                     080H
                                             ; Call kernel.
```

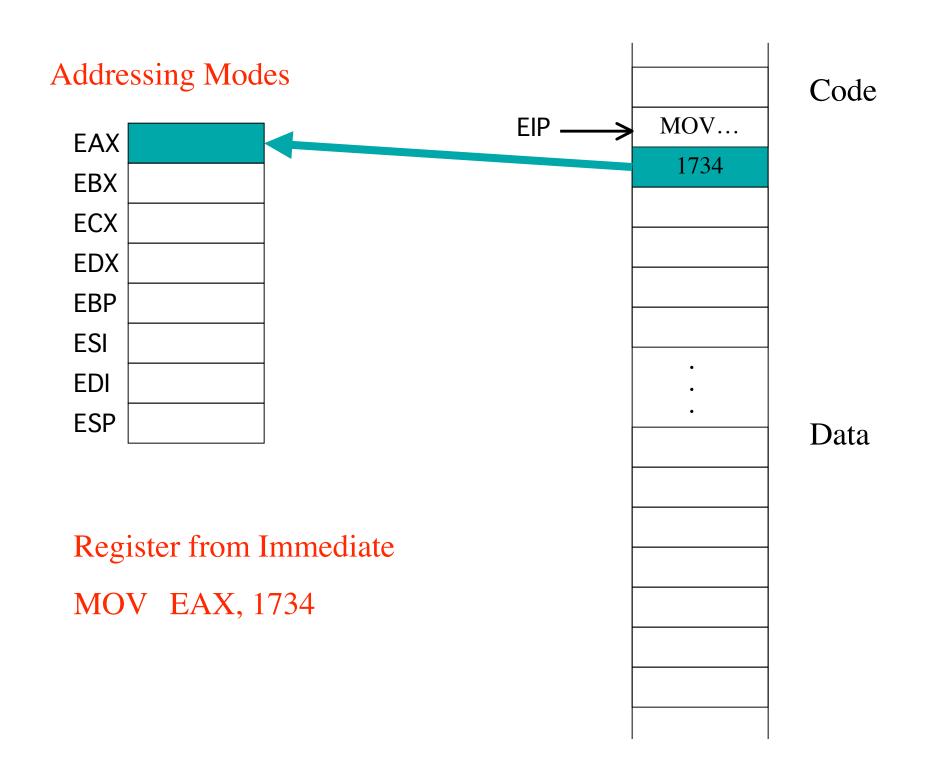
80x86 Addressing Modes

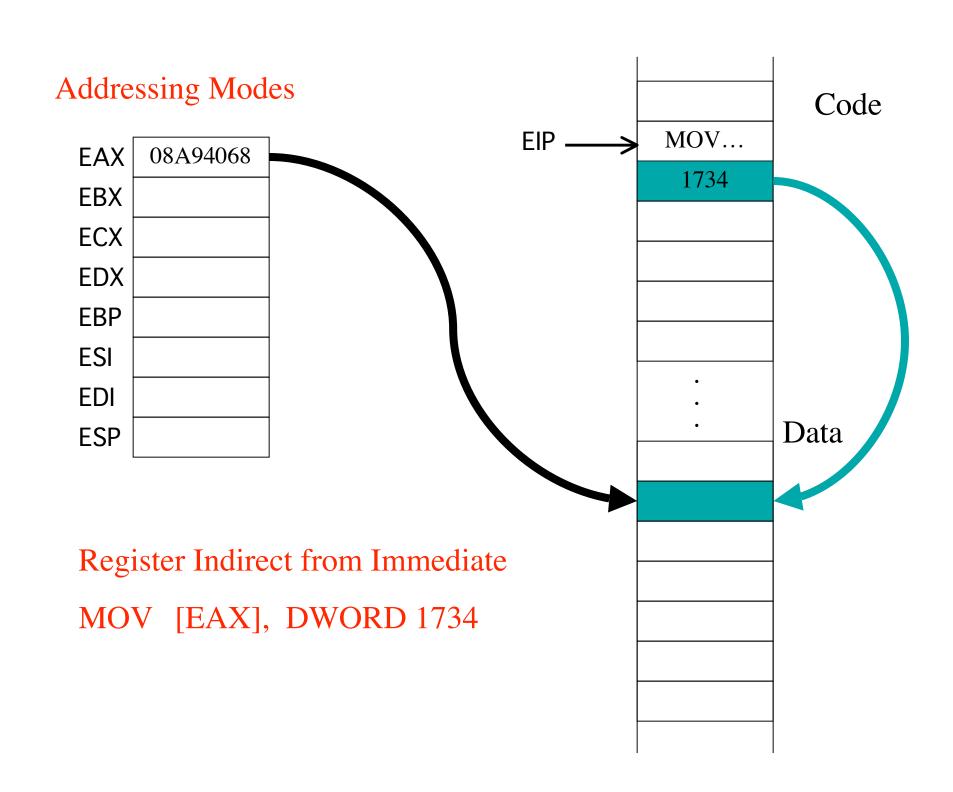
- We want to store the value 1734h.
- The value 1734h may be located in a register or in memory.
- The location in memory might be specified by the code, by a register, ...
- Assembly language syntax for MOV

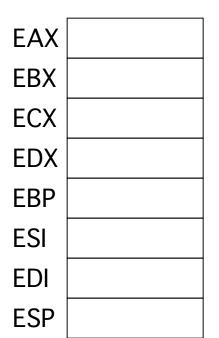

MOV DEST, SOURCE

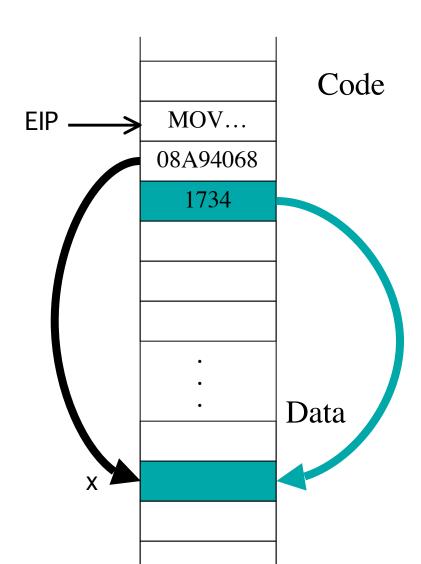

Addressing Modes




Register from Register


MOV EAX, ECX





Addressing Modes

Memory from Immediate

MOV [08A94068], DWORD 1734

MOV [x], DWORD 1734

Notes on Addressing Modes

• More complicated addressing modes later:

MOV EAX, [ESI+4*ECX+12]

- Figures not drawn to scale. Constants 1734h and 08A94068h take 4 bytes (little endian).
- Some addressing modes are not supported by some operations.
- Labels represent addresses not contents of memory.

Next Time

- Overview of i386 instruction set.
- Arithmetic instructions, logical instructions.
- EFLAGS register