
CMSC 313 Lecture 04

• Homework 2

• IA-32 Basic Execution Environment
• IA-32 General Purpose Registers

• Moore’s “Law”

• Evolution of the Pentium Chip
• “Hello World” in Linux Assembly Language

• Addressing Modes

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313 Computer Organization & Assembly Language Programming Fall 2004

Homework 2 Section 0101

Due: Tuesday, September 21, 2004

Instructions: For the following questions, show all of your work. It is not sufficient to

provide the answers.

Exercise 1. Convert the following decimal numbers to hexadecimal representations of

16-bit two’s complement numbers.

a. 1293

b. 31249

c. -24752

d. -4096

Exercise 2. Convert the following 16-bit two’s complement numbers in hexadecimal rep-

resentation to decimal.

a. FFF516

b. 7CD916

c. 00BB16

d. 800016

Exercise 3. Write the following decimal numbers in IEEE-754 single precision format.

Give your answers in binary.

a. 14.125

b. 3.14159

c. −58.375

d. −4096

Exercise 4. Write the decimal equivalents for these IEEE-754 single precision floating

point numbers given in binary.

a. 0 10000001 01100000000000000000000

b. 1 10000001 00010000000000000000000

c. 1 10000000 00000000000000000000000

d. 0 00000001 01011000000000000000000

Chapter 1: Introduction1-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sy
st

em
 B

us

Data Bus

Address Bus

Control Bus

(ALU,
Registers,

and Control)

Memory Input and
Output (I/O)

CPU

The System Bus Model
• A refinement of the von Neumann model, the system bus model

has a CPU (ALU and control), memory, and an input/output unit.

• Communication among components is handled by a shared path-
way called the system bus , which is made up of the data bus, the
address bus, and the control bus. There is also a power bus, and
some architectures may also have a separate I/O bus.

Chapter 4: The Instruction Set Architecture4-9

© 1999 M. Murdocca and V. HeuringPrinciples of Computer Architecture by M. Murdocca and V. Heuring

The Fetch-Execute Cycle

• The steps that the control unit carries out in executing a program
are:

(1) Fetch the next instruction to be executed from memory.

(2) Decode the opcode.

(3) Read operand(s) from main memory, if any.

(4) Execute the instruction and store results.

(5) Go to step 1.

This is known as the fetch-execute cycle .

3-3

BASIC EXECUTION ENVIRONMENT

Figure 3-1. IA-32 Basic Execution Environment

0

232 -1

Eight 32-bit

32-bits

32-bits

General-Purpose Registers

Segment Registers

EFLAGS Register

EIP (Instruction Pointer Register)

Address Space*

*The address space can be

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

flat or segmented. Using

XMM RegistersEight 128-bit
Registers

16-bits Control Register

16-bits Status Register

48-bits FPU Instruction Pointer Register

48-bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

SSE and SSE2 Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16-bits Tag Register

the physical address
extension mechanism, a
physical address space of
236 -1 can be addressed.

3-10

BASIC EXECUTION ENVIRONMENT

3.4.2. Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment in memory. To access a particular segment
in memory, the segment selector for that segment must be present in the appropriate segment
register.

When writing application code, programmers generally create segment selectors with assembler
directives and symbols. The assembler and other tools then create the actual segment selector
values associated with these directives and symbols. If writing system code, programmers may
need to create segment selectors directly. (A detailed description of the segment-selector data
structure is given in Chapter 3, Protected-Mode Memory Management, of the Intel Architecture
Software Developer’s Manual, Volume 3.)

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, the
segment registers are loaded with segment selectors that point to overlapping segments, each of
which begins at address 0 of the linear address space (as shown in Figure 3-5). These overlap-
ping segments then comprise the linear address space for the program. (Typically, two overlap-
ping segments are defined: one for code and another for data and stacks. The CS segment
register points to the code segment and all the other segment registers point to the data and stack
segment.)

When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register points to a different segment within the
linear address space (as shown in Figure 3-6). At any time, a program can thus access up to six
segments in the linear address space. To access a segment not pointed to by one of the segment
registers, a program must first load the segment selector for the segment to be accessed into a
segment register.

Figure 3-4. Alternate General-Purpose Register Names

071531 16 8

AH AL

BH BL

CH CL

DH DL

BP

SI

DI

SP

16-bit

AX

DX

CX

BX

32-bit

EAX

EBX

ECX

EDX

EBP

ESI

ESP

General-Purpose Registers

EDI

3-9

BASIC EXECUTION ENVIRONMENT

• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next
instruction to be executed.

3.4.1. General-Purpose Registers

The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are
provided for holding the following items:

• Operands for logical and arithmetic operations

• Operands for address calculations

• Memory pointers.

Although all of these registers are available for general storage of operands, results, and
pointers, caution should be used when referencing the ESP register. The ESP register holds the
stack pointer and as a general rule should not be used for any other purpose.

Many instructions assign specific registers to hold operands. For example, string instructions
use the contents of the ECX, ESI, and EDI registers as operands. When using a segmented
memory model, some instructions assume that pointers in certain registers are relative to
specific segments. For instance, some instructions assume that a pointer in the EBX register
points to a memory location in the DS segment.

The special uses of general-purpose registers by instructions are described in Chapter 5, Instruc-
tion Set Summary, in this volume and Chapter 3, Instruction Set Reference, in the Intel Architec-
ture Software Developer’s Manual, Volume 2. The following is a summary of these special uses:

• EAX—Accumulator for operands and results data.

• EBX—Pointer to data in the DS segment.

• ECX—Counter for string and loop operations.

• EDX—I/O pointer.

• ESI—Pointer to data in the segment pointed to by the DS register; source pointer for string
operations.9

• EDI—Pointer to data (or destination) in the segment pointed to by the ES register;
destination pointer for string operations.

• ESP—Stack pointer (in the SS segment).

• EBP—Pointer to data on the stack (in the SS segment).

As shown in Figure 3-4, the lower 16 bits of the general-purpose registers map directly to the
register set found in the 8086 and Intel 286 processors and can be referenced with the names
AX, BX, CX, DX, BP, SP, SI, and DI. Each of the lower two bytes of the EAX, EBX, ECX, and
EDX registers can be referenced by the names AH, BH, CH, and DH (high bytes) and AL, BL,
CL, and DL (low bytes).

Moore’s “Law”

• In the mid-1960’s, Intel Chairman of the Board
Gordon Moore observed that “the number of
transistors that would be incorporated on a silicon
die would double every 18 months for the next
several years.”

• His prediction has continued to hold true.
• Perhaps a self-fulfilling prophecy?

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

“Hello World” in Linux Assembly

• Use your favorite UNIX editor (vi, emacs, pico, ...)

• Assemble using NASM on gl.umbc.edu
nasm -f elf hello.asm

• NASM documentation is on-line.

• Need to “load” the object file
ld hello.o

• Execute
a.out

• CMSC 121 Introduction to UNIX
UMBC, CMSC313, Richard Chang <chang@umbc.edu>

 1 ;
 2 ; Linux style "fast call". Assemble using NASM
 3 ;
 4 SECTION .data ; Data section
 5
 6 msg: db "Hello, world", 10 ; The string to print.
 7 len: equ $-msg
 8
 9 SECTION .text ; Code section.
 10 global _start
 11 _start: nop ; Entry point.
 12 mov edx, len ; Arg 3: length of string.
 13 mov ecx, msg ; Arg 2: pointer to string.
 14 mov ebx, 1 ; Arg 1: file descriptor.
 15 mov eax, 4 ; Write.
 16 int 080H
 17
 18 mov ebx, 0 ; exit code, 0=normal
 19 mov eax, 1 ; Exit.
 20 int 080H ; Call kernel.

80x86 Addressing Modes
• We want to store the value 1734h.
• The value 1734h may be located in a register

or in memory.
• The location in memory might be specified

by the code, by a register, …
• Assembly language syntax for MOV

MOV DEST, SOURCE

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Register

MOV EAX, ECX

Data

Code

.

.

.

MOV…

1734

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Register Indirect

MOV EAX, [ECX]

Data

Code

.

.

.

MOV…

08A94068

1734

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Memory

MOV EAX, [08A94068]

MOV EAX, [x]

Data

Code

.

.

.

08A94068
MOV…

1734

Addressing Modes

x

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Immediate

MOV EAX, 1734

Data

Code

.

.

.

1734
MOV…

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register Indirect from Immediate

MOV [EAX], DWORD 1734

Data

Code

.

.

.

1734
MOV…08A94068

Addressing Modes

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Memory from Immediate

MOV [08A94068], DWORD 1734

MOV [x], DWORD 1734

Data

Code

.

.

.

1734

MOV…
08A94068

Addressing Modes

x

Notes on Addressing Modes
• More complicated addressing modes later:

MOV EAX, [ESI+4*ECX+12]

• Figures not drawn to scale. Constants 1734h
and 08A94068h take 4 bytes (little endian).

• Some addressing modes are not supported
by some operations.

• Labels represent addresses not contents of
memory.

Next Time

• Overview of i386 instruction set.

• Arithmetic instructions, logical instructions.

• EFLAGS register

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

