
CMSC 313 Lecture 03

• Multiple-byte data
big-endian vs little-endian

sign extension

• Multiplication and division

• Floating point formats

• Character Codes

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313 Computer Organization & Assembly Language Programming Fall 2004
Homework 1

For the following questions, show all of your work. It is not sufficient to provide the answers.

Exercise 1. Convert the following numbers.

a. 6234710 to unsigned binary

b. 8DF616 to base 2

c. 41.37510 to base 4

d. 10011101.01012 to base 10

Exercise 2. Convert each of the following numbers to 8-bit signed magnitude, 8-bit one’s
complement, 8-bit two’s complement and 8-bit excess 128 formats.

a. (−122)10

b. (−31)10

c. (−16)10

d. 12710

Exercise 3. Find the decimal equivalents for the following 8-bit two’s complement num-
bers.

a. 1000 0001

b. 0111 1011

c. 1111 0001

d. 0010 1010

Exercise 4. Perform two’s complement addition on the following pairs of numbers. In
each case, indicate whether an overflow has occured.

a. 1110 1011 + 0110 1001

b. 1110 1011 + 1111 1111

c. 1000 1100 + 1100 0001

d. 0111 1001 + 0000 1001

Chapter 4: The Instruction Set Architecture4-5

© 1999 M. Murdocca and V. HeuringPrinciples of Computer Architecture by M. Murdocca and V. Heuring

Common Sizes for Data Types
• A byte is composed of 8 bits. Two nibbles make up a byte.

• Halfwords, words, doublewords, and quadwords are composed of
bytes as shown below:

Bit

Nibble

Byte

16-bit word (halfword)

32-bit word

64-bit word (double)

0

0110

10110000

11001001 01000110

10110100 00110101 10011001 01011000

01011000 01010101 10110000 11110011
11001110 11101110 01111000 00110101

128-bit word (quad) 01011000 01010101 10110000 11110011
11001110 11101110 01111000 00110101
00001011 10100110 11110010 11100110
10100100 01000100 10100101 01010001

Richard Chang
The term "word" is not standardized! Some people use it to mean 16-bit words, others 32-bit words.

Richard Chang
16-bit word

Richard Chang
32-bit word

Chapter 4: The Instruction Set Architecture4-6

© 1999 M. Murdocca and V. HeuringPrinciples of Computer Architecture by M. Murdocca and V. Heuring

Big-Endian and Little-Endian Formats
• In a byte-addressable machine, the smallest datum that can be

referenced in memory is the byte. Multi-byte words are stored as a
sequence of bytes, in which the address of the multi-byte word is
the same as the byte of the word that has the lowest address.

• When multi-byte words are used, two choices for the order in
which the bytes are stored in memory are: most significant byte at
lowest address, referred to as big-endian , or least significant byte
stored at lowest address, referred to as little-endian .

Big-Endian

x x+1 x+2 x+3

31 Little-Endian

x+3 x+2 x+1 x

0

Word address is x for both big-endian and little-endian formats.

0 31

Byte

← MSB LSB → ← MSB LSB →

Two’s Complement Sign Extension
Decimal 8-bit 16-bit

+5 0000 0101 0000 0000 0000 0101
-5 1111 1011 1111 1111 1111 1011

• Why does sign extension work?

-x is represented as 28 - x in 8-bit
-x is represented as 216 - x in 16-bit
28 - x + ??? = 216 - x
??? = 216 - 28

 1 0000 0000 0000 0000 = 65536
- 1 0000 0000 = 256
 1111 1111 0000 0000 = 65280

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Chapter 3: Arithmetic3-14

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Multiplication Example
• Multiplication of two 4-bit unsigned binary integers produces an

8-bit result.

1 1 0 1

1 0 1 1×
1 1 0 1

1 1 0 1
0 0 0 0

1 1 0 1

1 0 0 0 1 1 1 1

(11)10

(13)10 Multiplicand M

Multiplier Q

(143)10 Product P

Partial products

• Multiplication of two 4-bit signed binary integers produces only a
7-bit result (each operand reduces to a sign bit and a 3-bit mag-
nitude for each operand, producing a sign-bit and a 6-bit result).

Chapter 3: Arithmetic3-20

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Multiplication of Signed Integers

1 1 1 1

0 0 0 1×
1 1 1 1

0 0 0 0
0 0 0 0

0 0 0 0

0 0 0 0 1 1 1 1

(+1)10

(–1)10

(+15)10

(Incorrect; result should be –1)

1 1 1 1

0 0 0 1×
1 1 1 1

0 0 0 0
0 0 0 0

0 0 0 0

1 1 1 1 1 1 1 1

(+1)10

(–1)10

(–1)10

1 1 1 1

1 1 1 1
0 0 0
0 0
0

• Sign extension to the target word size is needed for the negative
operand(s).

• A target word size of 8 bits is used here for two 4-bit signed op-
erands, but only a 7-bit target word size is needed for the result.

Chapter 3: Arithmetic3-17

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example of Base 2 Division

1 1

0 0 1 0

0 1 1 1
1 1

0

R 1

1

• (7 / 3 = 2)10 with a remainder R of 1.

• Equivalently, (0111/ 11 = 10) 2 with a remainder R of 1.

Chapter 2: Data Representation2-18

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Base 10 Floating Point Numbers
• Floating point numbers allow very large and very small numbers

to be represented using only a few digits, at the expense of preci-
sion. The precision is primarily determined by the number of dig-
its in the fraction (or significand , which has integer and fractional
parts), and the range is primarily determined by the number of
digits in the exponent.

• Example (+6.023 × 1023):

+

Sign

2 3 6 0 2

Exponent
(two digits)

Significand
(four digits)

Position of decimal point

3.

Chapter 2: Data Representation2-19

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Normalization
• The base 10 number 254 can be represented in floating point form

as 254 × 100, or equivalently as:

25.4 × 101, or

2.54 × 102, or

.254 × 103, or

.0254 × 104, or

infinitely many other ways, which creates problems when making
comparisons, with so many representations of the same number.

• Floating point numbers are usually normalized , in which the radix
point is located in only one possible position for a given number.

• Usually, but not always, the normalized representation places the
radix point immediately to the left of the leftmost, nonzero digit in
the fraction, as in: .254 × 103.

Chapter 2: Data Representation2-20

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Floating Point Example
• Represent .254 × 103 in a normalized base 8 floating point format

with a sign bit, followed by a 3-bit excess 4 exponent, followed by
four base 8 digits.

• Step #1: Convert to the target base.

.254 × 103 = 25410. Using the remainder method, we find that 254 10
= 376 × 80:

254/8 = 31 R 6

31/8 = 3 R 7

3/8 = 0 R 3

• Step #2: Normalize: 376 × 80 = .376 × 83.

• Step #3: Fill in the bit fields, with a positive sign (sign bit = 0), an
exponent of 3 + 4 = 7 (excess 4), and 4-digit fraction = .3760:

0 111 . 011 111 110 000

Chapter 2: Data Representation2-21

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Error, Range, and Precision
• In the previous example, we have the base b = 8, the number of

significant digits (not bits!) in the fraction s = 4, the largest expo-
nent value (not bit pattern) M = 3, and the smallest exponent value
m = -4.

• In the previous example, there is no explicit representation of 0,
but there needs to be a special bit pattern reserved for 0 other-
wise there would be no way to represent 0 without violating the
normalization rule. We will assume a bit pattern of
0 000 000 000 000 000 represents 0.

• Using b, s, M, and m, we would like to characterize this floating
point representation in terms of the largest positive representable
number, the smallest (nonzero) positive representable number,
the smallest gap between two successive numbers, the largest
gap between two successive numbers, and the total number of
numbers that can be represented.

Chapter 2: Data Representation2-22

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Error, Range, and Precision (cont’)

• Largest representable number: bM × (1 - b-s) = 83 × (1 - 8-4)

• Smallest representable number: bm × b-1 = 8-4 - 1 = 8-5

• Largest gap: bM × b-s = 83 - 4 = 8-1

• Smallest gap: bm × b-s = 8-4 - 4= 8-8

Chapter 2: Data Representation2-23

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Error, Range, and Precision (cont’)

• Number of representable numbers: There are 5 components: (A)
sign bit; for each number except 0 for this case, there is both a
positive and negative version; (B) (M - m) + 1 exponents; (C) b - 1
values for the first digit (0 is disallowed for the first normalized
digit); (D) bs-1 values for each of the s-1 remaining digits, plus (E)
a special representation for 0. For this example, the 5 components
result in: 2 × ((3 - 4) + 1) × (8 - 1) × 84-1 + 1 numbers that can be
represented. Notice this number must be no greater than the num-
ber of possible bit patterns that can be generated, which is 2 16.

2 × ((M - m) + 1) × (b - 1) × bs-1 +

Sign bit
First digit
of fraction

Remaining
digits of
fraction

The number
of exponents Zero

A EB C D

1

Chapter 2: Data Representation2-24

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example Floating Point Format

• Smallest number is 1/8

• Largest number is 7/4

• Smallest gap is 1/32

• Largest gap is 1/4

• Number of representable numbers is 33.

–3 –1 –1 0 1 1 3
– 1

4
1
4

–1
8

1
8

22 2 2

b = 2	 	 M = +1
s = 3	 	 m = –2

Chapter 2: Data Representation2-25

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Gap Size Follows Exponent Size
• The relative error is approximately the same for all numbers.

• If we take the ratio of a large gap to a large number, and compare
that to the ratio of a small gap to a small number, then the ratios
are the same:

bM × (1 – b–s)

bM–s

1 – b–s

b–s

= =
bs–1A large number

A large gap 1

bm × (1 – b–s)

bm–s

1 – b–s

b–s

= =
bs–1A small number

A small gap 1

Chapter 2: Data Representation2-26

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Conversion Example
• Example: Convert (9.375 × 10-2)10 to base 2 scientific notation

• Start by converting from base 10 floating point to base 10 fixed
point by moving the decimal point two positions to the left, which
corresponds to the -2 exponent: .09375.

• Next, convert from base 10 fixed point to base 2 fixed point:

.09375 × 2 = 0.1875

.1875 × 2 = 0.375

.375 × 2 = 0.75

.75 × 2 = 1.5

.5 × 2 = 1.0

• Thus, (.09375) 10 = (.00011)2.

• Finally, convert to normalized base 2 floating point:

.00011 = .00011 × 20 = 1.1 × 2-4

IEEE-754 32-bit Floating Point Format

• sign bit, 8-bit exponent, 23-bit mantissa

• normalized as 1.xxxxx
• leading 1 is hidden

• 8-bit exponent in excess 127 format
NOT excess 128

0000 0000 and 1111 1111 are reserved

• +0 and -0 is zero exponent and zero mantissa
•1111 1111 exponent and zero mantissa is infinity

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Chapter 2: Data Representation2-27

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

IEEE-754 Floating Point Formats

Single
precision

Sign
(1 bit)

Exponent Fraction

8 bits 23 bits

Double
precision

Exponent Fraction

11 bits 52 bits

32 bits

64 bits

Chapter 2: Data Representation2-28

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

IEEE-754 Examples

(a) +1.101 × 25

Value

0

Sign Exponent Fraction

Bit Pattern

1000 0100 101 0000 0000 0000 0000 0000

(b) −1.01011 × 2−126 1 0000 0001 010 1100 0000 0000 0000 0000

(c) +1.0 × 2127 0 1111 1110 000 0000 0000 0000 0000 0000

(d) +0 0 0000 0000 000 0000 0000 0000 0000 0000

(e) −0 1 0000 0000 000 0000 0000 0000 0000 0000

(f) +∞ 0 1111 1111 000 0000 0000 0000 0000 0000

(g) +2−128 0 0000 0000 010 0000 0000 0000 0000 0000

(h) +NaN 0 1111 1111 011 0111 0000 0000 0000 0000

(i) +2−128 0 011 0111 1111 0000 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0000 0000

Chapter 2: Data Representation2-29

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

IEEE-754 Conversion Example
• Represent -12.625 10 in single precision IEEE-754 format.

• Step #1: Convert to target base. -12.625 10 = -1100.1012

• Step #2: Normalize. -1100.101 2 = -1.1001012 × 23

• Step #3: Fill in bit fields. Sign is negative, so sign bit is 1. Expo-
nent is in excess 127 (not excess 128!), so exponent is repre-
sented as the unsigned integer 3 + 127 = 130. Leading 1 of
significand is hidden, so final bit pattern is:

1 1000 0010 . 1001 0100 0000 0000 0000 000

Chapter 3: Arithmetic3-23

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Floating Point Arithmetic
• Floating point arithmetic differs from integer arithmetic in that ex-

ponents must be handled as well as the magnitudes of the oper-
ands.

• The exponents of the operands must be made equal for addition
and subtraction. The fractions are then added or subtracted as ap-
propriate, and the result is normalized.

• Ex: Perform the floating point operation: (.101 × 23 + .111 × 24)2
• Start by adjusting the smaller exponent to be equal to the larger

exponent, and adjust the fraction accordingly. Thus we have .101
× 23 = .010 × 24, losing .001 × 23 of precision in the process.

• The resulting sum is (.010 + .111) × 24 = 1.001 × 24 = .1001 × 25, and
rounding to three significant digits, .100 × 25, and we have lost an-
other 0.001 × 24 in the rounding process.

Chapter 3: Arithmetic3-24

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Floating Point Multiplication/Division
• Floating point multiplication/division are performed in a manner

similar to floating point addition/subtraction, except that the sign,
exponent, and fraction of the result can be computed separately.

• Like/unlike signs produce positive/negative results, respectively.
Exponent of result is obtained by adding exponents for multiplica-
tion, or by subtracting exponents for division. Fractions are multi-
plied or divided according to the operation, and then normalized.

• Ex: Perform the floating point operation: (+.110 × 25) / (+.100 × 24)2

• The source operand signs are the same, which means that the re-
sult will have a positive sign. We subtract exponents for division,
and so the exponent of the result is 5 – 4 = 1.

• We divide fractions, producing the result: 110/100 = 1.10.

• Putting it all together, the result of dividing (+.110 × 25) by (+.100 ×
24) produces (+1.10 × 21). After normalization, the final result is
(+.110 × 22).

Chapter 2: Data Representation2-31

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

ASCII Character Code
• ASCII is a 7-bit code, com-

monly stored in 8-bit
bytes.

• “A” is at 41 16. To convert
upper case letters to
lower case letters, add
2016. Thus “a” is at 41 16 +
2016 = 6116.

• The character “5” at posi-
tion 35 16 is different than
the number 5. To convert
character-numbers into
number-numbers, sub-
tract 30 16: 3516 - 3016 = 5.

00 NUL
01 SOH
02 STX
03 ETX
04 EOT
05 ENQ
06 ACK
07 BEL
08 BS
09 HT
0A LF
0B VT
0C FF
0D CR
0E SO
0F SI

10 DLE
11 DC1
12 DC2
13 DC3
14 DC4
15 NAK
16 SYN
17 ETB
18 CAN
19 EM
1A SUB
1B ESC
1C FS
1D GS
1E RS
1F US

20 SP
21 !
22 "
23 #
24 $
25 %
26 &
27 '
28 (
29)
2A *
2B +
2C ´
2D -
2E .
2F /

30 0
31 1
32 2
33 3
34 4
35 5
36 6
37 7
38 8
39 9
3A :
3B ;
3C <
3D =
3E >
3F ?

40 @
41 A
42 B
43 C
44 D
45 E
46 F
47 G
48 H
49 I
4A J
4B K
4C L
4D M
4E N
4F O

50 P
51 Q
52 R
53 S
54 T
55 U
56 V
57 W
58 X
59 Y
5A Z
5B [
5C \
5D]
5E ^
5F _

60 `
61 a
62 b
63 c
64 d
65 e
66 f
67 g
68 h
69 i
6A j
6B k
6C l
6D m
6E n
6F o

70 p
71 q
72 r
73 s
74 t
75 u
76 v
77 w
78 x
79 y
7A z
7B {
7C |
7D }
7E ~
7F DEL

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL

Null
Start of heading
Start of text
End of text
End of transmission
Enquiry
Acknowledge
Bell

BS
HT
LF
VT

Backspace
Horizontal tab
Line feed
Vertical tab

FF
CR
SO
SI
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB

Form feed
Carriage return
Shift out
Shift in
Data link escape
Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Synchronous idle
End of transmission block

CAN
EM
SUB
ESC
FS
GS
RS
US
SP
DEL

Cancel
End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator
Space
Delete

Chapter 2: Data Representation2-32

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

EBCDIC
Character

Code
• EBCDIC is an 8-bit

code.

STX Start of text RS Reader Stop DC1 Device Control 1 BEL Bell
DLE Data Link Escape PF Punch Off DC2 Device Control 2 SP Space
BS Backspace DS Digit Select DC4 Device Control 4 IL Idle
ACK Acknowledge PN Punch On CU1 Customer Use 1 NUL Null
SOH Start of Heading SM Set Mode CU2 Customer Use 2
ENQ Enquiry LC Lower Case CU3 Customer Use 3
ESC Escape CC Cursor Control SYN Synchronous Idle
BYP Bypass CR Carriage Return IFS Interchange File Separator
CAN Cancel EM End of Medium EOT End of Transmission
RES Restore FF Form Feed ETB End of Transmission Block
SI Shift In TM Tape Mark NAK Negative Acknowledge
SO Shift Out UC Upper Case SMM Start of Manual Message
DEL Delete FS Field Separator SOS Start of Significance
SUB Substitute HT Horizontal Tab IGS Interchange Group Separator
NL New Line VT Vertical Tab IRS Interchange Record Separator
LF Line Feed UC Upper Case IUS Interchange Unit Separator

00 NUL 20 DS 40 SP 60 – 80 A0 C0 { E0 \
01 SOH 21 SOS 41 61 / 81 a A1 ~ C1 A E1
02 STX 22 FS 42 62 82 b A2 s C2 B E2 S
03 ETX 23 43 63 83 c A3 t C3 C E3 T
04 PF 24 BYP 44 64 84 d A4 u C4 D E4 U
05 HT 25 LF 45 65 85 e A5 v C5 E E5 V
06 LC 26 ETB 46 66 86 f A6 w C6 F E6 W
07 DEL 27 ESC 47 67 87 g A7 x C7 G E7 X
08 28 48 68 88 h A8 y C8 H E8 Y
09 29 49 69 89 i A9 z C9 I E9 Z
0A SMM 2A SM 4A ¢ 6A ‘ 8A AA CA EA
0B VT 2B CU2 4B 6B , 8B AB CB EB
0C FF 2C 4C < 6C % 8C AC CC EC
0D CR 2D ENQ 4D (6D _ 8D AD CD ED
0E SO 2E ACK 4E + 6E > 8E AE CE EE
0F SI 2F BEL 4F | 6F ? 8F AF CF EF
10 DLE 30 50 & 70 90 B0 D0 } F0 0
11 DC1 31 51 71 91 j B1 D1 J F1 1
12 DC2 32 SYN 52 72 92 k B2 D2 K F2 2
13 TM 33 53 73 93 l B3 D3 L F3 3
14 RES 34 PN 54 74 94 m B4 D4 M F4 4
15 NL 35 RS 55 75 95 n B5 D5 N F5 5
16 BS 36 UC 56 76 96 o B6 D6 O F6 6
17 IL 37 EOT 57 77 97 p B7 D7 P F7 7
18 CAN 38 58 78 98 q B8 D8 Q F8 8
19 EM 39 59 79 99 r B9 D9 R F9 9
1A CC 3A 5A ! 7A : 9A BA DA FA |
1B CU1 3B CU3 5B $ 7B # 9B BB DB FB
1C IFS 3C DC4 5C . 7C @ 9C BC DC FC
1D IGS 3D NAK 5D) 7D ' 9D BD DD FD
1E IRS 3E 5E ; 7E = 9E BE DE FE
1F IUS 3F SUB 5F ¬ 7F " 9F BF DF FF

Chapter 2: Data Representation2-33

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Unicode
Character

Code

• Unicode is a 16-
bit code.

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
000B
000C
000D
000E
000F
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
001A
001B
001C
001D
001E
001F

NUL
STX
ETX

Start of text
End of text

ENQ
ACK
BEL

Enquiry
Acknowledge
Bell

BS
HT
LF

Backspace
Horizontal tab
Line feed VT Vertical tab

SOH Start of heading
EOT End of transmission

DLE Data link escape

DC1
DC2
DC3
DC4
NAK
NBS
ETB

Device control 1
Device control 2
Device control 3
Device control 4
Negative acknowledge
Non-breaking space
End of transmission block

EM
SUB
ESC
FS
GS
RS
US

End of medium
Substitute
Escape
File separator
Group separator
Record separator
Unit separator

Null CAN Cancel

NUL 0020
SOH 0021
STX 0022
ETX 0023
EOT 0024
ENQ 0025
ACK 0026
BEL 0027

0028
0029

LF 002A
VT 002B
FF 002C
CR 002D
SO 002E
SI 002F
DLE 0030
DC1 0031
DC2 0032
DC3 0033
DC4 0034
NAK 0035
SYN 0036
ETB 0037
CAN 0038
EM 0039
SUB 003A
ESC 003B
FS 003C
GS 003D
RS 003E
US 003F

BS
HT

0040
0041
0042
0043
0044
0045
0046
0047
0048
0049
004A
004B
004C
004D
004E
004F
0050
0051
0052
0053
0054
0055
0056
0057
0058
0059
005A
005B
005C
005D
005E
005F

SP
!
"
#
$
%
&
'
(
)
*
+
´
-
.
/
0
1
2
3
4
5
6
7
8
9
:
;
<
=
>
?

0060
0061
0062
0063
0064
0065
0066
0067
0068
0069
006A
006B
006C
006D
006E
006F
0070
0071
0072
0073
0074
0075
0076
0077
0078
0079
007A
007B
007C
007D
007E
007F

@
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
[
\
]
^
_

0080
0081
0082
0083
0084
0085
0086
0087
0088
0089
008A
008B
008C
008D
008E
008F
0090
0091
0092
0093
0094
0095
0096
0097
0098
0099
009A
009B
009C
009D
009E
009F

`
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z
{
|
}
~

DEL

00A0
00A1
00A2
00A3
00A4
00A5
00A6
00A7
00A8
00A9
00AA
00AB
00AC
00AD
00AE
00AF
00B0
00B1
00B2
00B3
00B4
00B5
00B6
00B7
00B8
00B9
00BA
00BB
00BC
00BD
00BE
00BF

Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl
Ctrl

00C0
00C1
00C2
00C3
00C4
00C5
00C6
00C7
00C8
00C9
00CA
00CB
00CC
00CD
00CE
00CF
00D0
00D1
00D2
00D3
00D4
00D5
00D6
00D7
00D8
00D9
00DA
00DB
00DC
00DD
00DE
00DF

NBS
¡
¢
£
¤
¥

§
¨
©
a

«
¬
–
®
–

˚
±
2

3

´
µ
¶
˙

1

o

»
1/4
1/2
3/4
¿

Ç

00E0
00E1
00E2
00E3
00E4
00E5
00E6
00E7
00E8
00E9
00EA
00EB
00EC
00ED
00EE
00EF
00F0
00F1
00F2
00F3
00F4
00F5
00F6
00F7
00F8
00F9
00FA
00FB
00FC
00FD
00FE
00FF

À
Á
Â
Ã
Ä
Å
Æ
Ç
È
É
Ê
Ë
Ì
Í
Î
Ï

Ñ
Ò
Ó
Ô
Õ
Ö
×
Ø
Ù
Ú
Û
Ü
Y
y

D

´
´

à
á
â
ã
ä
å
æ
ç
è
é
ê
ë
ì
í
î
ï

ñ
ò
ó
ô
õ
ö
÷
ø
ù
ú
û
ü

ÿ

¶

P
P

pp

CR Carriage return
SO Shift out
SI Shift in

FF Form feed

SP
DEL

Space
Delete

Ctrl Control

SYN Synchronous idle

§

Next Time

• Basic Architecture of Intel Pentium Chip

• “Hello World” in Linux Assembly
• Addressing Modes

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

