
CMSC 313 Lecture 01

• Course Overview
Prerequisites, Syllabus, Grading, Project Policy, etc.

• Levels of machines: from electrons to C++
• Machine Models: von Neumann vs. System Bus

• Fetch-Execute Cycle

• Review of base conversion
• Representing negative numbers

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Course Syllabus
We will follow two textbooks: Principles of Computer Architecture, by Murdocca and Heuring, and Linux

Assembly Language Programming, by Neveln. The following schedule outlines the material to be covered
during the semester and specifies the corresponding sections in each textbook.

CMSC 313, Computer Organization & Assembly Language Programming, Section 0101 Fall 2004

Date Topic M&H Neveln Assign Due
Th 09/02 Introduction & Overview 1.1-1.8 1.1-1.6
Tu 09/07 Data Representation I 2.1-2.2, 3.1-3.3 2.4-2.7, 3.6-3.8 HW1
Th 09/09 Data Representation II
Tu 09/14 i386 Assembly Language I 3.10-3.13, 4.1-4.8 HW2 HW1
Th 09/16 i386 Assembly Language II 6.1-6.5 Proj1
Tu 09/21 i386 Assembly Language III HW2
Th 09/23 i386 Assembly Language IV Proj2 Proj1
Tu 09/28 Examples
Th 09/30 Machine Language 5.1-5.7 Proj3 Proj2
Tu 10/05 Compiling, Assembling & Linking 5.1-5.3
Th 10/07 Subroutines 7.1-7.4
Tu 10/12 The Stack & C Functions
Th 10/14 Linux Memory Model 7.7 8.1-8.8 Proj4 Proj3
Tu 10/19 Interrupts & System Calls 9.1-9.8
Th 10/21 Cache Memory 7.6 Proj4
Tu 10/26 Midterm Exam
Th 10/28 Introduction to Digital Logic A.1-A.3 3.1-3.3 DigSim1
Tu 11/02 Transistors & Logic Gates A.4-A.7
Th 11/04 Circuits for Addition 3.5 HW3 DigSim1
Tu 11/09 Combinational Logic Components A.10
Th 11/11 Circuit Simplification I B.1-B.2 HW4 HW3
Tu 11/16 Flip Flops I A.11
Th 11/18 Flip Flops II DigSim2 HW4
Tu 11/23 Finite State Machines A.12-A.13
Th 11/25 Thanksgiving break
Tu 11/30 Circuit Simplification II B.3 HW5 DigSim2
Th 12/02 Finite State Machine Design
Tu 12/07 Registers & Memory A.14-15, 7.1-7.5 DigSim3 HW5
Th 12/09 I/O 8.1-8.3
Tu 12/14 TBA DigSim3
Tu 12/21 Final Exam 10:30am-12:30pm

CMSC 313, Computer Organization & Assembly Language Programming Fall 2004

Course Description

Instructor: Prof. Richard Chang TA: Mithila Patwardhan
Office: ITE 326 Office: ITE 349
 hrs: Tu&Thu 11:30a-12:30p hrs: Mon&Wed 2:30-3:30p
Phone: 410-455-3093 Phone: 410-455-8933
Email: chang@umbc.edu Email: mithila1@umbc.edu

Time and Place. Tuesday & Thursday 10:00am – 11:30am, ITE 227.

Textbooks.
• Principles of Computer Architecture, Murdocca and Heuring, Prentice-Hall, 2000.
• Linux Assembly Language Programming, Neveln, Prentice-Hall, 2000.

Course Web Page: <http://www.csee.umbc.edu/~chang/cs313.f04/>

Prerequisites. You should have mastered the material covered in the following courses: CMSC 202
Computer Science II and CMSC 203 Discrete Structures. In particular, we will assume that you have
had extensive programming experience in C/C++. Also, you must be familiar with and be able to
work with truth tables, Boolean algebra and modular arithmetic.

Objectives. The purpose of this course is to introduce computer science majors to computing systems
below that of a high-level programming language. The material covered can be broadly separated
into the categories of assembly language programming and computer organization. Under the
heading of assembly language programming students will be introduced to the i386 instruction set,
low-level programming, the Linux memory model, as well as the internal workings of compilers,
assemblers and linkers. Topics under computer organization include digital logic design
(combinational circuits, sequential circuits, finite state machines) and basic computer architecture
(system bus, memory hierarchy and input/output devices). A secondary goal of this course is to
prepare computer science majors for CMSC 411 Computer Architecture.

Grading. Your final grade will be based upon 5 homework assignments (20% total), 3 short
programming assignments (12% total), 1 long programming assignment (8%), 3 circuit simulation
exercises (12% total), a midterm exam (24%) and a final exam (24%). Your grade is given for work
done during the semester; incomplete grades will only be given for medical illness or other such dire
circumstances.

Lecture Policy. You are expected to attend all lectures. You are responsible for all material covered
in the lecture as well as those in the assigned reading. However, this subject cannot be learned simply
by listening to the lectures and reading the book. In order to master the material, you need to spend
time outside the classroom on the programming assignments, simulation exercises and homework
assignments.

Due Dates. There will be homework or exercises due on most weeks. Homeworks are due at the
beginning of lecture. Exercises and projects turned in via online submission are due 1 minute past
11:59pm of the due date. With one exception, late homework, exercises and programming
assignments will not be accepted — this is to allow for timely grading and discussion of the
solutions. The exception is that each student may submit one assignment (of any kind) up to one
week late during the semester.

Academic Integrity. You are allowed to discuss the homework assignments with other students.
However, circuit simulation exercises and programming projects must be completed by individual
effort. Furthermore, you must write up your homework independently. This means you should only
have the textbooks and your own notes in front of you when you write up your homework — not
your friend's notes, your friend's homework or other reference material. You should not have a copy
of someone else's homework or project under any circumstance. For example, you should not let
someone turn in your homework. Cases of academic dishonesty will be dealt with severely.

Exams. The exams will be closed-book and closed-notes. The date for the midterm exam is Tuesday,
October 26. The final exam will cover the material from the second part of the course. The date and
time of the final exam is Tuesday, December 21, 10:30am to 12:30pm. You will not be able to take
the final exam at an earlier time.

Advising Note. This course is a replacement for CMSC 211 Assembly Language Programming and
CMSC 311 Computer Organization. Students who have taken either CMSC 211 or CMSC 311
previously should not take this class. Furthermore, computer science majors who take this class must
also take CMSC 411 Computer Architecture to satisfy the requirements of a BS degree in computer
science. CMSC 313 by itself will not be sufficient for graduation.

Policy on Programming Projects and Exercises
Critical programming skills cannot be learned by attending lecture. You should budget enough time to

work on the programming assignments as well. Please consult the time table given on the syllabus and plan
ahead. Programs are due by midnight (1 minute after 11:59pm) of the due date. Programs will be submitted
using the submit system running on the GL machines. Late assignments will not be accepted (with the
one exception noted in the course description). Programs will be graded on five criteria: correctness, design,
style, documentation and efficiency. So, turning in a project that merely “works” is not sufficient to receive
full credit.

For this course, programming projects must be developed using the NASM assembler for the Linux
operating system running on an Intel Pentium CPU. This arrangement is not compatible with other flavors
of UNIX, with Linux running on non-Intel CPUs or with assemblers for Windows 95/98/2k/ME/XP/NT.
When in doubt the UMBC machine linux.gl.umbc.edu will be the final arbiter of what constitutes a
working program. You may work on your own machines running Linux, but you will have to be your own
system administrator. None of the instructors, TA or support staff at OIT will be available to help you
install or debug Linux.

Cheating
Read this section carefully! It describes what constitutes cheating for this course. If you have

questions, ask the instructor. Ignorance will not be accepted as an excuse after the fact.
All programming assignments and circuit simulation exercises must be completed by your own

individual effort. You should never have a copy of someone else's program either on paper or electronically
under any circumstance. Also, you should never give a copy of your program or circuit, either on paper or
electronically, to another student. This also means that you cannot work on the programming assignments
or circuit simulation exercises together. Cases of academic dishonesty will be dealt with severely.
Egregious cases of cheating will be reported as a major infraction. In this case, you will not be allowed to
drop the course. Also, a major infraction would appear as a permanent part of your student record and
would be seen by potential employers when they ask for an official copy of your transcript.

 We will be using special software to check for cheating. The software is quite sophisticated and has
surprised some students in the past. We will, of course, not release the details of the internal workings of
this cheat-checking software, but you are forewarned that there is no difficulty in comparing every pair of
submitted projects.

Finally, you are also warned that if your program is turned in by someone else, then both you and the
person who copied your program will receive a 0 for that assignment. This includes substantially similar
programs. Furthermore, all parties concerned will have their prior programs checked for cheating. So, if
you cheat on the last assignment, you can lose all the points from all of your assignments — even if you
did all the work and just let other people copy from you.

The UMBC academic integrity policy is available at http://www.umbc.edu/integrity/students.html.

CMSC 313, Computer Organization & Assembly Language Programming Fall 2004

Chapter 1: Introduction1-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Some Definitions
• Computer architecture deals with the functional behavior of a

computer system as viewed by a programmer (like the size of a
data type – 32 bits to an integer).

• Computer organization deals with structural relationships that are
not visible to the programmer (like clock frequency or the size of
the physical memory).

• There is a concept of levels in computer architecture. The basic
idea is that there are many levels at which a computer can be con-
sidered, from the highest level, where the user is running pro-
grams, to the lowest level, consisting of transistors and wires.

Chapter 1: Introduction1-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

High Level

High Level Languages

User Level: Application Programs

Low Level

Functional Units (Memory, ALU, etc.)

Logic Gates

Transistors and Wires

Assembly Language / Machine Code

Microprogrammed / Hardwired Control

Levels of Machines
• There are a number of levels in a computer (the exact number is

open to debate), from the user level down to the transistor level.

• Progressing from the top level downward, the levels become less
abstract as more of the internal structure of the computer be-
comes visible.

Richard Chang
Assembly Language / Machine Code

Richard Chang

Richard Chang
Logic Gates

Richard Chang

Computer Science View of the World

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

User
1

User
2

User
3

User
n

Application Programs

Operating System

Computer Hardware

 compiler assembler text editor database sys

...

Chapter 1: Introduction1-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Input Unit
Arithmetic
and Logic

Unit (ALU)
Output Unit

Memory
Unit

Control Unit

The von Neumann Model
• The von Neumann model consists of five major components:

(1) input unit; (2) output unit; (3) arithmetic logic unit; (4) memory
unit; (5) control unit.

Chapter 1: Introduction1-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sy
st

em
 B

us

Data Bus

Address Bus

Control Bus

(ALU,
Registers,

and Control)

Memory Input and
Output (I/O)

CPU

The System Bus Model
• A refinement of the von Neumann model, the system bus model

has a CPU (ALU and control), memory, and an input/output unit.

• Communication among components is handled by a shared path-
way called the system bus , which is made up of the data bus, the
address bus, and the control bus. There is also a power bus, and
some architectures may also have a separate I/O bus.

Chapter 4: The Instruction Set Architecture4-9

© 1999 M. Murdocca and V. HeuringPrinciples of Computer Architecture by M. Murdocca and V. Heuring

The Fetch-Execute Cycle

• The steps that the control unit carries out in executing a program
are:

(1) Fetch the next instruction to be executed from memory.

(2) Decode the opcode.

(3) Read operand(s) from main memory, if any.

(4) Execute the instruction and store results.

(5) Go to step 1.

This is known as the fetch-execute cycle .

Chapter 1: Introduction1-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Monitor

CD-ROM drive

Hard disk drive

Keyboard

Sockets for
internal memory

CPU (Microprocessor
beneath heat sink)

Sockets for plug-in
expansion cards

Diskette drive

A Typical Computer System

Chapter 1: Introduction1-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Memory

Input / output

Battery

Plug-in expansion card slots

Power supply
connector

Pentium II processor slot
(ALU/control)

The Motherboard
• The five von Neumann components are visible in this example

motherboard, in the context of the system bus model.

(Source: TYAN Computer,
http://www.tyan.com)

Converting Base 6 to Base 10

• 123.456 = ???.???10

1236 = 1 x 3610 + 2 x 610 + 3 x 110 = 5110

0.456 = 4 x 1/610 + 5 x 1/3610 = 0.805555...10

123.456 = 51.805555...10

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Converting Base 10 to Base 6

• 754.9410 = 3254.5 35012 35012 35012...6
75410 = 116 x 2446 + 56 x 146 + 46 x 16 = ???6

754 ÷ 6 = 125 remainder 4

125 ÷ 6 = 20 remainder 5

 20 ÷ 6 = 3 remainder 2

 3 ÷ 6 = 0 remainder 3

32546 = 3 x 21610 + 2 x 3610 + 5 x 610 + 4 x 1 = 75410

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Richard Chang

Converting Base 10 to Base 6 (cont)

• 0.9410 = ???.???6

0.94 x 6 = 5.64 --> 5

0.64 x 6 = 3.84 --> 3

0.84 x 6 = 5.04 --> 5

0.04 x 6 = 0.24 --> 0

0.24 x 6 = 1.44 --> 1

0.44 x 6 = 2.64 --> 2

0.64 x 6 = 3.84 --> 3

0.9410 = 0.5 35012 35012 35012...6

5/6 + 3/36 + 5/216 + 0 + 1/65 + 2/66 = 0.939986282...10
UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Chapter 2: Data Representation2-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Base Conversion with the Remainder
Method

• Example: Convert 23.375 10 to base 2. Start by converting the inte-
ger portion:

23/2	
=	
11	
R 1

11/2	
=	
5	
R 1

5/2	
=	
2	
R 1

2/2	
=	
1	
R 0

1/2	
=	
0	
R 1

Integer Remainder

Least significant bit

Most significant bit

(23)10 = (10111)2

Chapter 2: Data Representation2-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Base Conversion with the Multiplica-
tion Method

• Now, convert the fraction:

.375	
×
	
2	
=	
0.75

.75	
×
	
2	
=	
1.50

.5	
×
	
2	
=	
1.00

Least significant bit

Most significant bit

(.375)10 = (.011)2

• Putting it all together, 23.375 10 = 10111.0112.

Chapter 2: Data Representation2-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Nonterminating Base 2 Fraction
• We can’t always convert a terminating base 10 fraction into an

equivalent terminating base 2 fraction:

.2

.4

.8

.6

.2

.

.

.

0.4

0.8

1.6

1.2

0.4

=

=

=

=

=

2

2

2

2

2

×

×

×

×

×

Chapter 2: Data Representation2-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Base 2, 8, 10, 16 Number Systems

• Example: Show a column for ternary (base 3). As an extension of
that, convert 14 10 to base 3, using 3 as the divisor for the remain-
der method (instead of 2). Result is 112 3

Binary
(base 2)

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

Octal
(base 8)

0
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17

Decimal
(base 10)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Hexadecimal
(base 16)

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Chapter 2: Data Representation2-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

More on Base Conversions
• Converting among power-of-2 bases is particularly simple:

10112 = (102)(112) = 234

234 = (24)(34) = (102)(112) = 10112

1010102 = (1012)(0102) = 528

011011012 = (01102)(11012) = 6D16

• How many bits should be used for each base 4, 8, etc. , digit? For
base 2, in which 2 = 2 1, the exponent is 1 and so one bit is used
for each base 2 digit. For base 4, in which 4 = 2 2, the exponent is
2, so so two bits are used for each base 4 digit. Likewise, for base
8 and base 16, 8 = 2 3 and 16 = 24, and so 3 bits and 4 bits are used
for base 8 and base 16 digits, respectively.

Next Time

• Representing negative numbers

• Modulo Arithmetic & Two’s Complement

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

