Due: Tuesday, December 7, 2003

- 1. (10 points) Question A.13, page 494, Murdocca & Heuring
- 2. (10 points) Question A.29, page 497, Murdocca & Heuring
- 3. (10 points) Question B.10, page 542, Murdocca & Heuring
- 4. (10 points) Question B.11, page 542, Murdocca & Heuring
- 5. (60 points) This problem asks you to take the steps involved in the design process of a finite state machine. You will design a finite state machine that has a one bit input x and a one bit output z. The machine must output 1 for every input sequence ending in the string 0010 or 100. The output should be 0 in all other cases.

[Adapted from *Contemporary Logic Design*, Randy H. Katz, Benjamin/Cummings Publishing, 1994.]

- (a) (10 points) In the space provided on the next page, draw the minimum statetransition diagram for the finite state machine described above. You must use the state-minimization algorithm described in class to show that the finite state machine has the minimum number of states. (*Hint:* You should have fewer than 8 states in your machine.)
- (b) (5 points) Use the state assignment heuristics described in class and pick *two* different state assignments for your finite state machine. *Note:* the bit pattern for the initial state must be 000.
- (c) (40 points) For each of the two state assignments:
 - i. Fill in the truth tables with values for D flip-flops, for the output bit and for J-K flip-flops.
 - ii. Use the Karnaugh maps provided to minimize the formulas for each column of the truth table.
 - iii. Count the number of gates needed for each implementation.
- (d) (5 points) Should you use your first or second state assignment? D flip-flops or J-K flip-flops?

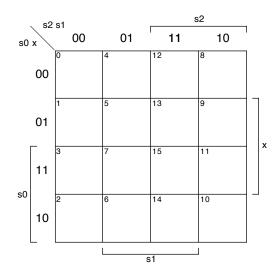
Note: Keep a copy of your work for the last question. You will need it for DigSim Assignment 3.

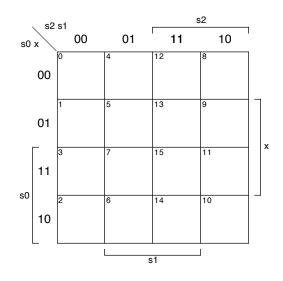
Minimized State Transition Diagram (show work)

State Assignment:

	Assignment #1	Assignment#2
А	000	000
В		
С		
D		
E		
F		
unused		
unused		

ASSIGNMENT #1

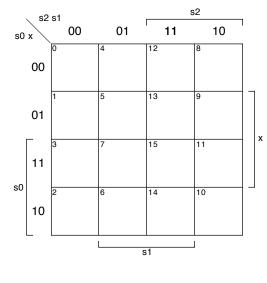

Excitation Table for J-K Flip-Flops


Q	Q'	J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

Truth Table:

	s2	s1	s0	Х	s2'	s1'	s0'	Z	j2	k2	j1	k 1	j0	k0
0	0	0	0	0										
1	0	0	0	1										
2	0	0	1	0										
3	0	0	1	1										
4	0	1	0	0										
5	0	1	0	1										
6	0	1	1	0										
7	0	1	1	1										
8	1	0	0	0										
9	1	0	0	1										
10	1	0	1	0										
11	1	0	1	1										
12	1	1	0	0										
13	1	1	0	1										
14	1	1	1	0										
15	1	1	1	1										

Assignment #1: Karnaugh Maps for D Flip-Flops and the output



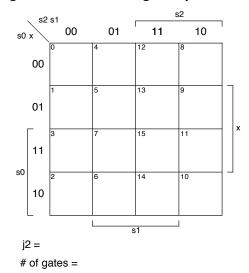
s2' =

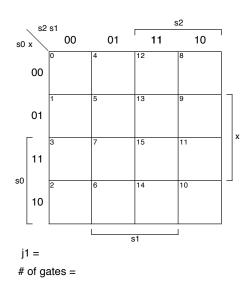
of gates =

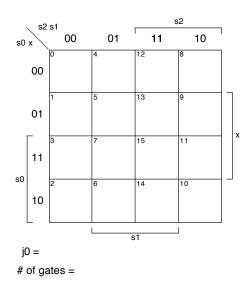
of gates =

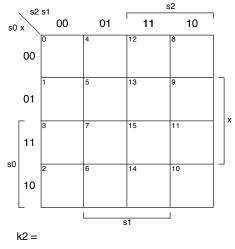
s1' =

of gates =

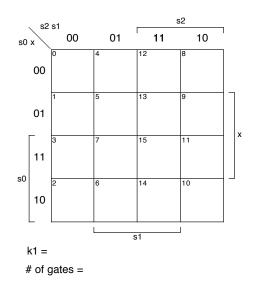


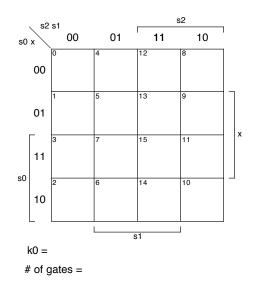



of gates =


Total # of gates for D flip-flops (don't count z) =

Assignment #1: Karnaugh Maps for J-K Flip-Flops

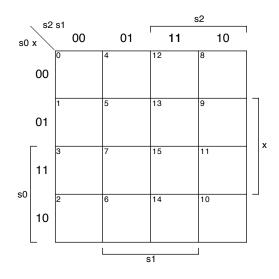


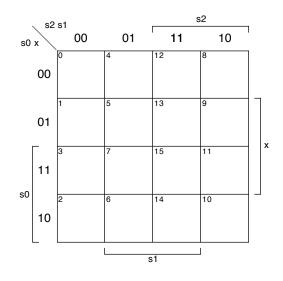


of gates =

Total # of gates for J-K flip-flops (don't count z) =

ASSIGNMENT #2

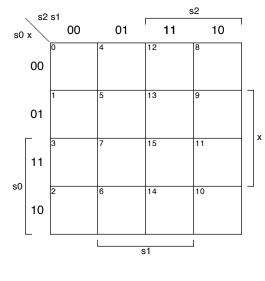

Excitation Table for J-K Flip-Flops


Q	Q'	J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	d	0

Truth Table:

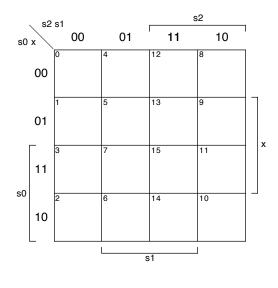
	s2	s1	s0	X	s2'	s1'	s0'	Z	j2	k2	j1	k 1	j0	k0
0	0	0	0	0										
1	0	0	0	1										
2	0	0	1	0										
3	0	0	1	1										
4	0	1	0	0										
5	0	1	0	1										
6	0	1	1	0										
7	0	1	1	1										
8	1	0	0	0										
9	1	0	0	1										
10	1	0	1	0										
11	1	0	1	1										
12	1	1	0	0										
13	1	1	0	1										
14	1	1	1	0										
15	1	1	1	1										

Assignment #2: Karnaugh Maps for D Flip-Flops and the output



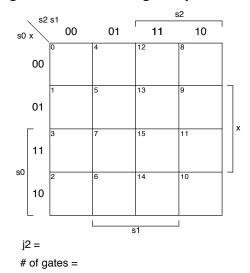
s2' =

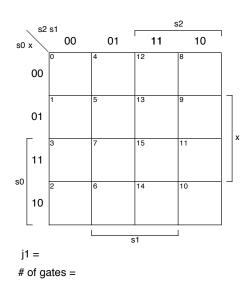
of gates =

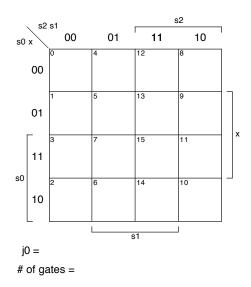

of gates =

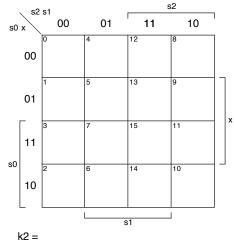
s1' =

of gates =

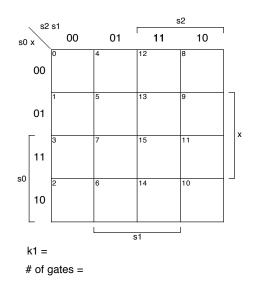


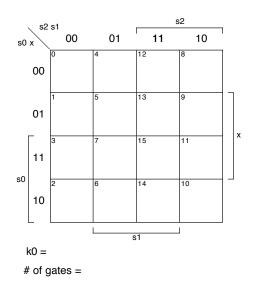



of gates =


Total # of gates for D flip-flops (don't count z) =

Assignment #2: Karnaugh Maps for J-K Flip-Flops





of gates =

Total # of gates for J-K flip-flops (don't count z) =