
CMSC 313 Lecture 27

• Last Time: FSM simplification

• DigSim2 Questions??
Place your username on the paper submission

• Registers

• Memory Organization

• DRAM

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Section 0101
Fall 2003

DigSim Assignment 2: Finite State Machine Simplifications
Due: Tuesday December 9, 2003

Objective
The objective is to design and simplify a moderately complex a finite state machine.

Assignment
For this project you will design and implement in DigSim a Mealy finite state machine with one

input bit x and one output bit z. The machine’s output z is 1 whenever the input sequence …0111 or
…1000 has been detected. The patterns may overlap. For example, if the machine is given input
0111000, the output would be 0001001. [Adapted from Contemporary Logic Design, Randy H. Katz,
Benjamin/Cummings Publishing, 1994.]

In order to complete the project, you must accomplish the following tasks. Note that for this
project, you will submit both your design work (on paper) and the DigSim implementation of the
resulting finite state machine (via submit).

1. Draw a transition diagram for the finite state machine described above. Use the state reduction
algorithm to minimize the number of states in your machine. Although, you might start with
an FSM with as many as 15 states, at the end of the reduction process you should have 7 states
in your machine. Name your states A, B, C, D, E, F and G. You may take shortcuts, but you
must show your work.

2. Assign bit patterns to each state of the machine. Use the heuristics for state assignment
presented in class (available on the course lecture topics web page). Do this step carefully as it
will have a large effect on the complexity of your final circuit. Hint: follow the loops in the
FSM and try to assign bit patterns such that in each step of the loop only one state bit
changes. You might not be able to achieve this for every step of the loop, but you can try to
have only one state bit change for most steps of the loop. Write down your final state
assignment in the table given.

3. Fill in the state transition table for the finite state machine given below. In this table, s2, s1 and
s0 are the state bits, x is the input bit and z is the output bit. Then s2’, s1’ and s0’ are the next
states to be stored in the flip flops.

4. Use the Karnaugh maps provided to simplify the Boolean formulas for a finite state machine
to be implemented using D flip-flops. You will need Karnaugh maps for s2’, s1’, s0’ and z.

5. Using the excitation table for J-K flip-flops, fill in the columns j2, k2, j1, k1, j0 and k0 in the
truth table below. The columns j2 and k2 represent the settings to the inputs of the J-K flip-
flop that will cause it to store the state bit s2’. The columns j1, k1, j0 and k0 are analogous
for the J-K flip-flops used to store state bits s1 and s0.

6. Use the Karnaugh maps provided to simplify the Boolean formulas for the J and K inputs to
each J-K flip flop. You will need Karnaugh maps for j2, k2, j1, k1, j0 and k0. The formula
for the output z will be the same as in Step 4.

7. Decide whether you want to use D flip-flops or J-K flip-flops. Briefly justify your choice.
8. Implement the resulting circuit in DigSim. Hint: it is possible to implement this FSM using

fewer than 14 gates. If your circuit requires many more gates, redo the simplification steps.

What to submit
In class on Tuesday December 9, turn in your finite state diagram, truth table, Karnaugh maps

and the resulting Boolean formulas on paper. Make copies of these, if you still need them to
implement your circuit in DigSim.

Save your circuit as you did in DigSim Assignment 1. Submit the circuit file using the Unix
submit command as in previous assignments. The submission name for this assignment is: digsim2.

CMSC 313 Digsim Exercise 2

Name: _________________________________

Minimized 7-State Transition Diagram (show work)

State Assignment:

 unused
G
F
E
D
C
B
A

Excitation Table for J-K Flip-Flops

Q Q' J K

0 0 0 d

0 1 1 d

1 0 d 1

1 1 d 0

Truth Table:

s2 s1 s0 x s2' s1' s0' z j2 k2 j1 k1 j0 k0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

Question:
Should you use D flip-flops or J-K flip-flops to implement this circuit? Why?

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s010

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0 10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

s2’ = s1’ =

s0’ = z =

Karnaugh Maps for D Flip-Flops and the output

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s010

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

j2 = k2 =

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s010

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

j1 = k1 =

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s010

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

j0 = k0 =

Karnaugh Maps for J-K Flip-Flops

Appendix A: Digital LogicA-75

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Four-Bit Register
• Makes use of tri-state buffers so that multiple registers can gang

their outputs to common output lines.

D3

Q3

D2

Q2

D1

Q1

D0

Q0

WR

EN

QD

D3

Write (WR)

Enable (EN)

Q3

QD

D2

Q2

QD

D1

Q1

QD

D0

Q0

CLK

Appendix A: Digital LogicA-76

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Left-Right
Shift

Register
with

Parallel
Read and

Write

D3

Q3

D2

Q2

D1

Q1

D0

Q0

Shift right input
Shift right output

Shift right input
Shift left output

c0c1

Control Function
c0c1

0
0
1
1

0
1
0
1

No change
Shift left
Shift right
Parallel load

QD

D3

Enable (EN)

Q3

QD

D2

Q2

QD

D1

Q1

QD

D0

Q0

CLK

c0

c1

Shift right input

c0

c1

Shift right
output

Shift right
input

Shift left output

Chapter 3: Arithmetic3-15

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A Serial Multiplier

Multiplicand (M)

m0m1m2m3

a0a1a2a3 q0q1q2q3

Multiplier (Q)

C

4–Bit Adder

Shift and
Add Control

Logic
Add

4

4

4

Shift Right
q0

A
Register

Chapter 3: Arithmetic3-16

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example of Multiplication Using
Serial Multiplier

C

0

0
0

1
0

0

1
0

0

A

0 0 0

1 1 0 1
0 1 1 0

0 0 1 1
1 0 0 1

0 1 0 0

0 0 0 1
1 0 0 0

1

Q

0 1 1

1 0 1 1
1 1 0 1

1 1 0 1
1 1 1 0

1 1 1 1

1 1 1 1
1 1 1 1

Multiplicand (M):

1 1 0 1
Initial values

Add M to A
Shift

Add M to A
Shift

Shift (no add)

Add M to A
Shift

Product

Chapter 7: Memory7-4

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Functional Behavior of a RAM Cell

QD

CLK

Read

Select

Data
In/Out

Chapter 7: Memory7-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Simplified RAM Chip Pinout

A0-Am-1 D0-Dw-1

WR

CS

Memory
Chip

Chapter 7: Memory7-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A Four-Word
Memory with
Four Bits per
Word in a 2D
Organization

D3
D2

D1
D0

Q3
Q2

Q1
Q0

WR

CS
Word 0

00

01

10

11

A0

A1

WR

WR

CS
Word 1

WR

CS
Word 2

WR

CS
Word 3

2-to-4
decoder

Chip Select
(CS)

Chapter 7: Memory7-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A Simplified Representation of the
Four-Word by Four-Bit RAM

Q3 Q2 Q1 Q0

A0

A1

WR

CS

D3 D2 D1 D0

4×4 RAM

Chapter 7: Memory7-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

2-1/2D Organization of a 64-Word by
One-Bit RAM

Row
Dec-
oder

Column Decoder (MUX/DEMUX)

A0

A1

A2

A3
A4

A5

Data

One Stored Bit

QD

CLK

Read

Row
Select

Column
Select

Data
In/Out

Read/Write
Control

Two bits wide:
One bit for data and
one bit for select.

Appendix A: Digital LogicA-33

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Decoder

D0

A D1

D2

D3

B

00
01

10
11

0
0
1
1

0
1
0
1

A B

1
0
0
0

D0

0
1
0
0

D1

0
0
1
0

D2

0
0
0
1

D3

D3 = A BD1 = A B D2 = A BD0 = A B

Enable

Enable = 1

0
0
1
1

0
1
0
1

A B

0
0
0
0

D0

0
0
0
0

D1

0
0
0
0

D2

0
0
0
0

D3

Enable = 0

Chapter 7: Memory7-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Two Four-Word by Four-Bit RAMs are
Used in Creating a Four-Word by

Eight-Bit RAM

A0

A1

WR
CS

D7 D6 D5 D4 D3 D2 D1 D0

4×4 RAM

Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0

4×4 RAM

Chapter 7: Memory7-10

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Two Four-Word by Four-Bit RAMs Make
up an Eight-Word by Four-Bit RAM

A0

A1

WR

D3 D2 D1 D0

4×4 RAM

Q3 Q2 Q1 Q0

4×4 RAM

1-to-2
decoder

0

1
A2

CS

CS

CS

Chapter 7: Memory7-11

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Single-In-Line Memory Module

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Vcc

CAS

DQ1

A0

A1

DQ2

A2

A3

Vss

DQ3

A4

A5

DQ4

A6

A7

DQ5

A8

A9

NC

DQ6

W

Vss

DQ7

NC

DQ8

NC

RAS

NC

NC

Vcc

PIN NOMENCLATURE

Address Inputs
Column-Address Strobe

Data In/Data Out
No Connection

Row-Address Strobe
5-V Supply

Ground
Write Enable

DQ1-DQ8

CAS
A0-A9

NC

RAS
Vcc
Vss
W

• Adapted
from(Texas Instru-
ments, MOS
Memory: Commer-
cial and Military
Specifications Data
Book , Texas Instru-
ments, Literature
Response Center,
P.O. Box 172228,
Denver, Colorado,
1991.)

Types of Random Access Memory

• Static RAM (SRAM)
Each bit is stored in a type of flip-flop

Typically takes four or six transistors per bit

Faster, but takes up more space in a chip

Retains information as long as power is supplied

Not to be confused with flash memory in digital cameras (EEPROMs)

• Dynamic RAM (DRAM)
Each bit is stored in a capacitor

Uses one capacitor and one transistor per bit

Slower, but takes up less space in a chip

Must be refreshed periodically (milliseconds), since the capacitor leaks

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

DRAM

• A DRAM memory cell

GND

Word Line

Bit Line

Capacitor

• Word line selects cell for reading or writing

• To write, the bit line is charged with logic 1 or 0

• To read, sensitive amplifier circuits detect small
changes in bit line.

• Reading discharges the capacitor.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

DRAM Read Cycle

1. Row address placed on the address bus.

2. Row Address Strobe (RAS) is asserted, allowing the row
address to latch.

3. Row address decoder selects proper row.

4. Write Enable (WE) disabled.

5. Column address placed on the address bus.

6. Column Address Strobe (CAS) is activated, allowing the
column address to latch.

7. Once the CAS signal has stabilized, sensing amplifiers
places data from the selected row & column on data bus.

8. RAS and CAS deactivated. Cycle begins again.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

DRAM

• DRAM is asynchronous, ignores system bus clock.
tRAC = Row Access Time = delay from RAS assertion until data is ready

tCAC = Column Access Time = delay from CAS assertion until data is ready

• DRAM access is sloooooow

• Each memory access must wait for time it takes to
activate and deactivate RAS.

• Fast Page Mode (FPM) DRAM allows successive
reads from the same row without deactivating RAS.

• Extended Data Out (EDO) DRAM overlaps CAS
assertion and data reads.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Synchronous DRAM (SDRAM)

• Uses system bus clock.

• Current models run at 433MHz (still much slower
than CPU).

• Burst mode allows fast successive reads from the
same row. (Good way to read in a cache line!)

• Double Data Rate (DDR) SDRAM provides data on
the positive and negative edges of the clock.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Next Time

• Review of semester

• Final exam review

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

