
CMSC 313 Lecture 26

• Review FSM Simplification

• Using J-K Flip-Flops
• DigSim Exercise 2

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Simplifying Finite State Machines

• State Reduction: equivalent FSM with fewer states

• State Assignment: choose an assignment of bit 
patterns to states (e.g., A is 010) that results in a 
smaller circuit

• Choice of flip-flops: use D flip-flops, J-K flip-flops or 
a T flip-flops? a good choice could lead to simpler 
circuits.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Last Time

• State Reduction Algorithm

• State Assignment Heuristics

• Used Sequence Detector example:
Reduced number of states from 7 to 6

Better state assignment yielded smaller circuit

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Appendix B: Reduction of Digital LogicB-43

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Excitation Tables
• Each table

shows the set-
tings that must
be applied at the
inputs at time t
in order to
change the out-
puts at time t+1.

0
0
1
1

0
1
0
1

Qt Qt+1 S

0
1
0
0

R

0
0
1
0

S-R
flip-flop

0
0
1
1

0
1
0
1

Qt Qt+1 D

0
1
0
1

D
flip-flop

0
0
1
1

0
1
0
1

Qt Qt+1 J

0
1
d
d

K

d
d
1
0

J-K
flip-flop

0
0
1
1

0
1
0
1

Qt Qt+1 T

0
1
1
0

T
flip-flop



Appendix B: Reduction of Digital LogicB-44

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Serial Adder

Serial
Adder

0 1 1 0 0

0 1 1 1 0

1 1 0 1 0X

Y

Z

Cin Cout

4 3 2 1 04 3 2 1 0 Time (t)Time (t)

A B00/0

01/1

10/1

11/0

00/1

10/0

01/0

11/1

No carry
state

Carry state

xi yi

zi

Present
state (St)

Input XY

00 01 10 11

A:0 0/0 0/1 0/1 1/0

B:1 0/1 1/0 1/0 1/1

Present state

Input XY

00 01 10 11

A A/0 A/1 A/1 B/0

B A/1 B/0 B/0 B/1

Next state Output

• State transi-
tion diagram,
state table,
and state as-
signment for
a serial adder.



Appendix B: Reduction of Digital LogicB-45

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Serial Adder Next-State Functions
• Truth table showing next-state functions for a serial adder for D,

S-R, T, and J-K flip-flops. Shaded functions are used in the ex-
ample.

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Y St

0
0
0
0
1
1
1
1

X

0
0
0
1
0
1
1
1

D

0
0
0
0
0
0
1
0

S

0
1
0
0
0
0
0
0

R

0
d
0
d
0
d
1
d

J

d
1
d
0
d
0
d
0

K

0
1
0
0
0
0
1
0

T

0
1
1
0
1
0
0
1

Z

Present 
State (Set) (Reset)



Appendix B: Reduction of Digital LogicB-46

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

J-K Flip-Flop Serial Adder Circuit

CLK
QJ

X

Y

Q

X
Y

Y

X

Z

S
KX

Y



Appendix B: Reduction of Digital LogicB-47

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

D Flip-Flop Serial Adder Circuit

CLK

QD

X

Y

Q

X
Y

Y

X

Z

S

X

Y



Appendix B: Reduction of Digital LogicB-35

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Transition
Diagram

A

B
0/0

1/0

C

D

E

F

G

0/0

1/0

0/0

1/0

0/0

1/0

1/0

1/1

0/01/1

0/0

0/1

Input: 0 1 1 0 1 1 1 0 0

Output: 0 0 1 1 1 1 0 1 0

Time: 0 1 2 3 4 5 6 7 8



UMBC, CMSC 313, Richard Chang <chang@umbc.edu>

A

B/D

C

E

F

G

0/1
0/0

0/0
0/0

0/0

0/0

1/0

1/0

1/0

1/1

1/1

6-State Sequence Detector



Improved Sequence Detector?

• Formulas from the 7-state FSM:
      __ 
s2’= (s0 + x)(s2 + s1 + s0)
      __        _
s1’=  s0 x + s0 x = s0 xor x
     _ 
s0’= x
        __           _
 z = s2 s1 x + s2 s1 x

• Formulas from the 6-state FSM:
     
s2’=  s2 s0 + s1
      __ __        __ 
s1’=  s2 s1 x + s2 s0 x
     __ __ _             __
s0’= s2 s1 x + s0 x + s2 s0 + s1 x
        __                     _
 z = s2 s0 x + s1 s0 x + s2 s0 x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Sequence Detector State Assignment
7-state new 6-state

s2 s1 s0 x s2' s1' s0' z
0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d  

s2 s1 s0 x s2' s1' s0' z
0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 0 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 d d d d
7 0 1 1 1 d d d d
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 0 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

 A  = 000  E  = 100
 B  = 001  F  = 101
 C  = 010  G  = 110
 D  = 011

 A  = 000  E  = 100
B/D = 001  F  = 101
 C  = 010  G  = 110
 D  = 011

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Improved Sequence Detector

• Textbook formulas for the 6-state FSM:
     
s2’=  s2 s0 + s1
      __ __        __ 
s1’=  s2 s1 x + s2 s0 x
     __ __ _             __
s0’= s2 s1 x + s0 x + s2 s0 + s1 x
        __                     _
 z = s2 s0 x + s1 s0 x + s2 s0 x

• New formulas for the 6-state FSM:
      __ 
s2’= (s0 + x)(s2 + s1 + s0)
      __
s1’=  s0 x
     _ 
s0’= x
        __           _
 z = s2 s1 x + s2 s1 x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



6-State Sequence Detector

Q Q' J K

0 0 0 d

0 1 1 d

1 0 d 1

1 1 d 0

s2 s1 s0 x s2' s1' s0' z j2 k2 j1 k1 j0 k0

0 0 0 0 0 0 0 1 0 0 d 0 d 1 d

1 0 0 0 1 0 1 0 0 0 d 1 d 0 d

2 0 0 1 0 0 0 1 0 0 d 0 d d 0

3 0 0 1 1 1 0 0 0 1 d 0 d d 1

4 0 1 0 0 1 0 1 0 1 d d 1 1 d

5 0 1 0 1 1 1 0 0 1 d d 0 0 d

6 0 1 1 0 d d d d d d d d d d

7 0 1 1 1 d d d d d d d d d d

8 1 0 0 0 1 0 1 0 d 0 0 d 1 d

9 1 0 0 1 1 1 0 1 d 0 1 d 0 d

10 1 0 1 0 0 0 1 0 d 1 0 d d 0

11 1 0 1 1 1 0 0 1 d 0 0 d d 1

12 1 1 0 0 1 0 1 1 d 0 d 1 1 d

13 1 1 0 1 1 1 0 0 d 0 d 0 0 d

14 1 1 1 0 d d d d d d d d d d

15 1 1 1 1 d d d d d d d d d d

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



6-State Sequence Detector
J2 K2

ddd0

ddd1

dd

dd

10

10

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

1ddd

0ddd

00

00

dd

dd

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

         _
J2 = s1 + s0 x K2 = s0 x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



6-State Sequence Detector
J1 K1

0dd0

0dd0

1d

0d

d1

d0

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

dddd

dddd

d0

d1

0d

1d

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

     __      _
J1 = s0 x K1 = x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



6-State Sequence Detector
J0 K0

dddd

dddd

00

11

00

11

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

0dd0

1dd1

dd

dd

dd

dd

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

     _
J0 = x K0 = x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Improved Sequence Detector

• Formulas for the 6-state FSM with D Flip-flops:
      __ 
s2’= (s0 + x)(s2 + s1 + s0)
      __
s1’=  s0 x
     _ 
s0’= x

• Formulas for the 6-state FSM with J-K Flip-flops: 
                          _
J2 = s1 + s0 x    K2 = s0 x
     __                _
J1 = s0 x         K1 = x
     _
J0 = x            K0 = x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



CMSC 313, Computer Organization & Assembly Language Programming Section 0101
Fall 2003

DigSim Assignment 2: Finite State Machine Simplifications
Due: Tuesday December 9, 2003

Objective
The objective is to design and simplify a moderately complex a finite state machine.

Assignment
For this project you will design and implement in DigSim a Mealy finite state machine with one 

input bit x and one output bit z. The machine’s output z is 1 whenever the input sequence …0111 or 
…1000 has been detected. The patterns may overlap. For example, if the machine is given input 
0111000, the output would be 0001001. [Adapted from Contemporary Logic Design, Randy H. Katz, 
Benjamin/Cummings Publishing, 1994.]

In order to complete the project, you must accomplish the following tasks. Note that for this 
project, you will submit both your design work (on paper) and the DigSim implementation of the 
resulting finite state machine (via submit).

1. Draw a transition diagram for the finite state machine described above. Use the state reduction 
algorithm to minimize the number of states in your machine. Although, you might start with 
an FSM with as many as 15 states, at the end of the reduction process you should have 7 states 
in your machine. Name your states A, B, C, D, E, F and G. You may take shortcuts, but you 
must show your work.

2. Assign bit patterns to each state of the machine. Use the heuristics for state assignment 
presented in class (available on the course lecture topics web page). Do this step carefully as it 
will have a large effect on the complexity of your final circuit. Hint: follow the loops in the 
FSM and try to assign bit patterns such that in each step of the loop only one state bit 
changes. You might not be able to achieve this for every step of the loop, but you can try to 
have only one state bit change for most steps of the loop. Write down your final state 
assignment in the table given.

3. Fill in the state transition table for the finite state machine given below. In this table, s2, s1 and 
s0 are the state bits, x is the input bit and z is the output bit. Then s2’, s1’ and s0’ are the next 
states to be stored in the flip flops.

4. Use the Karnaugh maps provided to simplify the Boolean formulas for a finite state machine 
to be implemented using D flip-flops. You will need Karnaugh maps for s2’, s1’, s0’ and z.

5. Using the excitation table for J-K flip-flops, fill in the columns j2, k2, j1, k1, j0 and k0 in the 
truth table below. The columns j2 and k2 represent the settings to the inputs of the J-K flip-
flop that will cause it to store the state bit s2’. The columns j1, k1, j0 and k0 are analogous 
for the J-K flip-flops used to store state bits s1 and s0.

6. Use the Karnaugh maps provided to simplify the Boolean formulas for the J and K inputs to 
each J-K flip flop. You will need Karnaugh maps for j2, k2, j1, k1, j0 and k0. The formula 
for the output z will be the same as in Step 4.

7. Decide whether you want to use D flip-flops or J-K flip-flops. Briefly justify your choice.
8. Implement the resulting circuit in DigSim. Hint: it is possible to implement this FSM using 

fewer than 14 gates. If your circuit requires many more gates, redo the simplification steps.

What to submit
In class on Tuesday December 9, turn in your finite state diagram, truth table, Karnaugh maps 

and the resulting Boolean formulas on paper. Make copies of these, if you still need them to 
implement your circuit in DigSim.

Save your circuit as you did in DigSim Assignment 1. Submit the circuit file using the Unix 
submit command as in previous assignments. The submission name for this assignment is: digsim2.



CMSC 313 Digsim Exercise 2

Name: _________________________________

Minimized 7-State Transition Diagram (show work)

State Assignment:

 unused
G
F
E
D
C
B
A



Excitation Table for J-K Flip-Flops

Q Q' J K

0 0 0 d

0 1 1 d

1 0 d 1

1 1 d 0

Truth Table:

s2 s1 s0 x s2' s1' s0' z j2 k2 j1 k1 j0 k0

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0

15 1 1 1 1

Question:
Should you use D flip-flops or J-K flip-flops to implement this circuit? Why?



10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s010

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0 10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

s2’ = s1’ =

s0’ = z =

Karnaugh Maps for D Flip-Flops and the output



10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s010

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

j2 = k2 =

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s010

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

j1 = k1 =

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s010

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

j0 = k0 =

Karnaugh Maps for J-K Flip-Flops



Next Time

• Registers

• Memory

UMBC, CMSC313, Richard Chang <chang@umbc.edu>




