
CMSC 313 Lecture 25

• DigSim Exercise 1 due

• State Reduction Algorithm
• State Assignment Heuristics

• Using J-K Flip-Flops (?)

• SCEQs
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CMSC 313, Computer Organization & Assembly Language Programming Section 0101

Fall 2003

DigSim Assignment 1: A Finite State Machine

Due: November 25, 2003

Objective: The objective of this assignment is to implement a finite state machine using DigSim.

Assignment: Consider the finite state machine represented below as a transition diagram1:
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This finite state machine starts in state q0 and has one input bit and one output bit. The
output bit is 1 if the input sequence up to the current point ends with 010 as long as the sequence
100 has never been seen. For example, the machine outputs 1 after reading 00011010, but outputs
0 after reading 110110010. (Verify for yourself that the transition diagram fits the description.)

Your assignment is to implement this finite state machine in DigSim. You must:

1. Use three D flip-flops to store the 7 states of the machine. State q0 will be represented as
000, q1 = 001, q2 = 010, . . . , q6 = 110. The bit pattern 111 is not used.

2. Let s2, s1, s0 be the state bits stored in the D flip-flops, x be the input bit and z be the output
bit. Fill in the attached truth table for the next state bits s

′

2, s
′

1, s
′

0 and the output bit z.

3. For s
′

2
, s

′

1
, s

′

0
and z, use Karnaugh maps to obtain simplified SOP or POS Boolean formulas.

4. Implement the finite state machine in DigSim. You should study the “Sequence Detector”
example in DigSim (use “Open example” under the File menu) for suggestions on the layout
of your finite state machine.

Implementation notes:

• Label the switches and flip-flops in your circuit appropriately.

• If you need a 4-input OR gate, you need to use two layers of 2-input or 3-input OR gates to
accomplish the same function. Ditto for 4-input AND gates.

1Adapted from Contemporary Logic Design, Randy H. Katz, Benjamin/Cummings Publishing, 1994.



• Make sure to leave time to debug your circuit. Note that to restart the finite state machine
in the 000 state, you need to save the circuit and load it back into DigSim.

• The D flip-flops in DigSim are positive-edge triggered. To change the state of the flip-flop,
change the input when the clock is low, then bring the clock from low to high. The input to
the D flip-flop when the clock changes from low to high will be stored in the flip-flop.

What to submit:

1. Make a copy of your truth-table and Karnaugh maps and submit the hard copy in class on
Tuesday November 25.

2. Save your circuit as you did in the DigSim part of Homework 4. Submit the circuit file
using the Unix submit command as in previous assignments. The submission name for this
assignment is: digsim1. The UNIX command to do this should look something like:

submit cs313_0101 digsim1 fsm.sim



Name:

Truth table:

m s2 s1 s0 x s
′

2 s
′

1 s
′

0 z

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0 d d d d

15 1 1 1 1 d d d d



10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s010

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0 10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

s2’ = s1’ =

s0’ = z =



Last Time

• Master-slave J-K flip-flops with two-phase clock

• Mealy vs Moore finite state machines
• Vending machine example

• Sequence detector example
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Simplifying Finite State Machines

• State Reduction: equivalent FSM with fewer states

• State Assignment: choose an assignment of bit 
patterns to states (e.g., A is 010) that results in a 
smaller circuit

• Choice of flip-flops: use D flip-flops, J-K flip-flops or 
a T flip-flops? a good choice could lead to simpler 
circuits.
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Appendix B: Reduction of Digital LogicB-29

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State Reduction
• Description of state machine M0 to be reduced.

X

0 1

A C/0 E/1

Present state

Input

B

C

D

E

D/0 E/1

C/1 B/0

C/1 A/0

A/0 C/1



State Reduction Algorithm
1. Use a 2-dimensional table — an entry for each pair of states.
2. Two states are "distinguished" if:

a. States X and Y of a finite state machine M are 
distinguished if there exists an input r such that the output of 
M in state X reading input r is different from the output of M 
in state Y reading input r.
b. States X and Y of a finite state machine are distinguished if 
there exists an input r such that M in state X reading input r 
goes to state X', M in state Y reading input r goes to state Y' 
and we already know that X' and Y' are distinguished states.

3. For each pair (X,Y), check if X and Y are distinguished using 
the definition above.

4. At the end of the algorithm, states that are not found to be 
distinguished are in fact equivalent.
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State Reduction Table

• An x entry indicates that the pair of states are 
known to be distinguished.

• A & B are equivalent, C & D are equivalent

x

x

xxx

xxx

E

D

C

B

A

EDCBA
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State Reduction Algorithm Performance

• As stated, the algorithm takes O(n4) time for a FSM 
with n states, because each pass takes O(n2) time 
and we make at most O(n2) passes.

• A more clever implementation takes O(n2) time.
• The algorithm produces a FSM with the fewest 

number states possible.

• Performance and correctness can be proven.
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Appendix B: Reduction of Digital LogicB-32

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The State Assignment Problem
• Two state assignments for machine M2.

P.S.

Input X

0 1

A B/1 A/1

B C/0 D/1

C C/0 D/0

D B/1 A/0

Machine M2

Input X

0 1

A: 00 01/1 00/1

B: 01 10/0 11/1

C: 10 10/0 11/0

D: 11 01/1 00/0

State assignment SA0

S0S1

Input X

0 1

A: 00 01/1 00/1

B: 01 11/0 10/1

C: 11 11/0 10/0

D: 10 01/1 00/0

State assignment SA1

S0S1



Appendix B: Reduction of Digital LogicB-33

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State Assignment SA 0
• Boolean equations for machine M2 using state assignment SA 0.
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Appendix B: Reduction of Digital LogicB-34

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State Assignment SA 1
• Boolean equations for machine M2 using state assignment SA 1.
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State Assignment Heuristics

• No known efficient alg. for best state assignment

• Some heuristics (rules of thumb):
The initial state should be simple to reset — all zeroes or all ones.

Minimize the number of state variables that change on each transition.

Maximize the number of state variables that don't change on each transition.

Exploit symmetries in the state diagram.

If there are unused states (when the number of states s is not a power of 2), 
choose the unused state variable combinations carefully.  (Don't just use the 
first s combination of state variables.)

Decompose the set of state variables into bits or fields that have well-defined 
meaning with respect to the input or output behavior.

Consider using more than the minimum number of states to achieve the 
objectives above.
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Appendix B: Reduction of Digital LogicB-35

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Transition
Diagram
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Input: 0 1 1 0 1 1 1 0 0

Output: 0 0 1 1 1 1 0 1 0

Time: 0 1 2 3 4 5 6 7 8



Appendix B: Reduction of Digital LogicB-36

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Table

X
0 1

A B/0 C/0

Present state

Input

B
C
D
E

D/0 E/0
F/0 G/0
D/0 E/0
F/0 G/1

F D/0 E/1
G F/1 G/0



Sequence Detector State Reduction Table

x

xx

xx

xxx

xx

xxx

F

E

FE

x

x

xx

xxx

G

D

C

B

A

GDCBA
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Appendix B: Reduction of Digital LogicB-37

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector Reduced State
Table

X
0 1

B'/0 C'/0

Present state

Input

B'/0 D'/0
E'/0 F'/0
E'/0 F'/1
B'/0 D'/1
E'/1 F'/0

A: A'
BD: B'

C: C'
E: D'
F: E'
G: F'
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Appendix B: Reduction of Digital LogicB-38

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Assignment

X
0 1

A':  000 001/0 010/0

Present state

Input

B':  001
C':  010
D':  011
E':  100

001/0 011/0
100/0 101/0
100/0 101/1
001/0 011/1

F':  101 100/1 101/0

S2S1S0 S2S1S0Z S2S1S0Z



Appendix B: Reduction of Digital LogicB-40

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector K-Maps

• K-map re-
duction of
next state
and output
functions for
sequence
detector.
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Improved Sequence Detector?

• Formulas from the 7-state FSM:
      __ 
s2’= (s0 + x)(s2 + s1 + s0)
      __        _
s1’=  s0 x + s0 x = s0 xor x
     _ 
s0’= x
        __           _
 z = s2 s1 x + s2 s1 x

• Formulas from the 6-state FSM:
     
s2’=  s2 s0 + s1
      __ __        __ 
s1’=  s2 s1 x + s2 s0 x
     __ __ _             __
s0’= s2 s1 x + s0 x + s2 s0 + s1 x
        __                     _
 z = s2 s0 x + s1 s0 x + s2 s0 x
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Sequence Detector State Assignment
7-state new 6-state

s2 s1 s0 x s2' s1' s0' z
0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d  

s2 s1 s0 x s2' s1' s0' z
0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 0 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 d d d d
7 0 1 1 1 d d d d
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 0 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

 A  = 000  E  = 100
 B  = 001  F  = 101
 C  = 010  G  = 110
 D  = 011

 A  = 000  E  = 100
B/D = 001  F  = 101
 C  = 010  G  = 110
 D  = 011
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6-State Sequence Detector
7-state new 6-state

0d00

1d11

11

11

10

10

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

0dd0

1dd1

11

11

10

10

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

      __       __
s2’= (s0 + x)(s2 + s1 + s0) s2’= (s0 + x)(s2 + s1 + s0)
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6-State Sequence Detector
7-state new 6-state
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      __        _      __
s1’=  s0 x + s0 x s1’= s0 x
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6-State Sequence Detector
7-state new 6-state
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s0’ = x s0’ = x
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6-State Sequence Detector
7-state new 6-state
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       __           _        __           _
z = s2 s1 x + s2 s1 x z = s2 s1 x + s2 s1 x
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Improved Sequence Detector

• Textbook formulas for the 6-state FSM:
     
s2’=  s2 s0 + s1
      __ __        __ 
s1’=  s2 s1 x + s2 s0 x
     __ __ _             __
s0’= s2 s1 x + s0 x + s2 s0 + s1 x
        __                     _
 z = s2 s0 x + s1 s0 x + s2 s0 x

• New formulas for the 6-state FSM:
      __ 
s2’= (s0 + x)(s2 + s1 + s0)
      __
s1’=  s0 x
     _ 
s0’= x
        __           _
 z = s2 s1 x + s2 s1 x
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Next Time

• more finite state machine design
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