
CMSC 313 Lecture 24

• DigSim Exercise 1 questions?

• Last Lecture:
J-K flip flops, edge-triggered flip-flops

Introduction to finite state machines

• Master-Slave J-K flip-flops & clocks

• Mealy vs Moore finite state machines
• Finite state machine design & simplification

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Section 0101

Fall 2003

DigSim Assignment 1: A Finite State Machine

Due: November 25, 2003

Objective: The objective of this assignment is to implement a finite state machine using DigSim.

Assignment: Consider the finite state machine represented below as a transition diagram1:

��� ���� �q0

0/0

�	

1/0

��

��� ���� �q10/0

��

1/0

��

��� ���� �q4 1/0

��

0/0

����� ���� �q2

1/0

� �����������������������

0/1

��

��� ���� �q5

1/0��

0/0

����� ���� �q3

1/0

� �

0/0 �� ��� ���� �q6 0/0,1/0

��

This finite state machine starts in state q0 and has one input bit and one output bit. The
output bit is 1 if the input sequence up to the current point ends with 010 as long as the sequence
100 has never been seen. For example, the machine outputs 1 after reading 00011010, but outputs
0 after reading 110110010. (Verify for yourself that the transition diagram fits the description.)

Your assignment is to implement this finite state machine in DigSim. You must:

1. Use three D flip-flops to store the 7 states of the machine. State q0 will be represented as
000, q1 = 001, q2 = 010, . . . , q6 = 110. The bit pattern 111 is not used.

2. Let s2, s1, s0 be the state bits stored in the D flip-flops, x be the input bit and z be the output
bit. Fill in the attached truth table for the next state bits s

′

2, s
′

1, s
′

0 and the output bit z.

3. For s
′

2
, s

′

1
, s

′

0
and z, use Karnaugh maps to obtain simplified SOP or POS Boolean formulas.

4. Implement the finite state machine in DigSim. You should study the “Sequence Detector”
example in DigSim (use “Open example” under the File menu) for suggestions on the layout
of your finite state machine.

Implementation notes:

• Label the switches and flip-flops in your circuit appropriately.

• If you need a 4-input OR gate, you need to use two layers of 2-input or 3-input OR gates to
accomplish the same function. Ditto for 4-input AND gates.

1Adapted from Contemporary Logic Design, Randy H. Katz, Benjamin/Cummings Publishing, 1994.

• Make sure to leave time to debug your circuit. Note that to restart the finite state machine
in the 000 state, you need to save the circuit and load it back into DigSim.

• The D flip-flops in DigSim are positive-edge triggered. To change the state of the flip-flop,
change the input when the clock is low, then bring the clock from low to high. The input to
the D flip-flop when the clock changes from low to high will be stored in the flip-flop.

What to submit:

1. Make a copy of your truth-table and Karnaugh maps and submit the hard copy in class on
Tuesday November 25.

2. Save your circuit as you did in the DigSim part of Homework 4. Submit the circuit file
using the Unix submit command as in previous assignments. The submission name for this
assignment is: digsim1. The UNIX command to do this should look something like:

submit cs313_0101 digsim1 fsm.sim

Name:

Truth table:

m s2 s1 s0 x s
′

2 s
′

1 s
′

0 z

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0 d d d d

15 1 1 1 1 d d d d

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s010

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0 10

11

9

14

15

13

6

7

5

2

3

1

81240

00 01 11 10

00

01

11

10

s2 s1

s0 x 11
s2

s1

x

s0

s2’ = s1’ =

s0’ = z =

Master-Slave Flip-Flops Revisited

• Master-slave J-K flip-flops
Should get rid of the endless toggle condition when J=1 & K=1

Clocking Problem 1: if master turns on before slave turns off,
slave latches the input as soon as the clock goes high.

Clocking Problem 2: if slave turns on before master turns off,
feeback of Q and ¬Q propagates through the master.

• Two-Phase Clocks: always turn off first!

Clock 1

Clock 2

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix A: Digital LogicA-59

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: Modulo-4 Counter
• Counter has a clock input (CLK) and a RESET input.

• Counter has two output lines, which take on values of 00, 01, 10,
and 11 on subsequent clock cycles.

3-bit
Synchronous

Counter

0 0 0 0 1 0 1 1 0 0RESET q0

4 3 2 1 04 3 2 1 0 Time (t)Time (t)

0 1 0 1 0

D

Q

Q

CLK

s0

s1

D

Q

Q

q1

s0

s1

Appendix A: Digital LogicA-60

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

State
Transition

Diagram for
Mod-4

Counter

A B1/00

0/01

1/00

Output 00
state

Output 01
state

RESET

q1

C D

Output 10
state

Output 11
state

q0

0/10
1/00

0/00

0/11

1/00

Mod 4 Counter Timing

Clock

Reset

s1

s0

q1

q0

Outputs 00 only when reset is high

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Mealy vs Moore Finite State Machines

• Mealy: output depends on input and state bits

Combinational
Logic

Flip
Flops

input output

• Moore: output depends only on state bits

Combinational
Logic

Flip
Flops

input output

Combinational
Logic

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix A: Digital LogicA-70

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: A Vending Machine
Controller

• Example: Design a finite state machine for a vending machine
controller that accepts nickels (5 cents each), dimes (10 cents
each), and quarters (25 cents each). When the value of the money
inserted equals or exceeds twenty cents, the machine vends the
item and returns change if any, and waits for next transaction.

• Implement with PLA and D flip-flops.

Appendix A: Digital LogicA-71

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Vending Machine State Transition
Diagram

A B D

C

0 ¢
 5 ¢
 15 ¢

10 ¢

N/000

Q/101

Q/110

N = Nickel
D = Dime
Q = Quarter

N/100 D/110

Q/111

D/000

N/000

D/100
Q/111

D/000 N/000

A dime is
inserted

1/0 = Dispense/Do not
dispense merchandise

1/0 = Return/Do not return
a nickel in change

1/0 = Return/Do not
return a dime in change

Appendix A: Digital LogicA-72

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Vending Machine State Table and
State Assignment

N
00 01

A B/000 C/000

P.S.

Input

B
C
D

C/000 D/000
D/000 A/100
A/100 A/110

(a)

D
10

A/110
A/101
A/111
B/111

Q N

00 01

A:00 01/000 10/000

P.S.

Input

10/000 11/000
11/000 00/100
00/100 00/110

(b)

D

10

00/110
00/101
00/111
01/111

Q

B:01
C:10
D:11

s1s0

x1x0 x1x0 x1x0

z2z1z0s1s0 /

Appendix A: Digital LogicA-73

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

PLA Vending Machine Controller
s1 s0 x1 x0

s1 s0 z2 z1 z0

0

1

2

4

5

6

8

9

10

12

13

14

(c)

5 ×
 5
PLA

z1
z0

x1
x0

(a)

DQ
s0

DQ
s1

CLK

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

1
0
0
d
0
1
0
d
1
0
0
d
0
0
1
d

0
0
1
d
0
0
1
d
0
1
1
d
1
1
1
d

0
0
1
d
0
0
0
d
0
0
1
d
0
1
1
d

0
0
0
d
0
0
1
d
0
0
1
d
0
0
1
d

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

s1 s0 x1 x0

Present
state C oin

0
1
0
d
1
1
0
d
1
0
0
d
0
0
0
d

s1 s0 z2 z1 z0

N ext
state

D ispense
R eturn nickel

Base 10
equivalent

(b)

R eturn dim e

z2

Simplifying Finite State Machines

• State Reduction: equivalent FSM with fewer states

• State Assignment: choose an assignment of bit
patterns to states (e.g., A is 010) that results in a
smaller circuit

• Choice of flip-flops: use D flip-flops, J-K flip-flops or
a T flip-flops? a good choice could lead to simpler
circuits.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix A: Digital LogicA-65

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Example: A Sequence Detector
• Example: Design a machine that outputs a 1 when exactly two of

the last three inputs are 1.

• e.g. input sequence of 011011100 produces an output sequence
of 001111010.

• Assume input is a 1-bit serial line.

• Use D flip-flops and 8-to-1 Multiplexers.

• Start by constructing a state transition diagram (next slide).

Appendix A: Digital LogicA-66

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Transition
Diagram

• Design a machine that
outputs a 1 when ex-
actly two of the last
three inputs are 1.

A

B
0/0

1/0

C

D

E

F

G

0/0

1/0

0/0

1/0

0/0

1/0

1/0

1/1

0/01/1

0/0

0/1

Appendix A: Digital LogicA-67

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Table

X

0 1

A B/0 C/0

Present state

Input

B
C
D
E

D/0 E/0
F/0 G/0
D/0 E/0
F/0 G/1

F D/0 E/1
G F/1 G/0

Appendix A: Digital LogicA-68

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sequence Detector State Assignment

X
0 1

A: 000 001/0 010/0

Present state

Input

B: 001
C: 010
D: 011
E: 100

011/0 100/0
101/0 110/0
011/0 100/0
101/0 110/1

F: 101 011/0 100/1

S2S1S0 S2S1S0Z S2S1S0Z

G: 110 101/1 110/0

(a)

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

s0 x

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

s1

0
0
0
1
1
1
0
1
1
1
0
1
1
1
d
d

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

s2

(b)

0
1
1
0
0
1
1
0
0
1
1
0
0
1
d
d

1
0
1
0
1
0
1
0
1
0
1
0
1
0
d
d

0
0
0
0
0
0
0
0
0
1
0
1
1
0
d
d

zs0s1s2

Input and
state at
time t

Next state
and output at

time t+1

Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

0d00

1d11

11

11

10

10

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

 __
s2’= (s0 + x)(s2 + s1 + s0)

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

1

d

d11

1111

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

 __ _
s1’= s0 x + s0 x = s0 xor x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

1111

1

d

d11

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

 _
s0’ = x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Sequence Detector
s2 s1 s0 x s2' s1' s0' z

0 0 0 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0
2 0 0 1 0 0 1 1 0
3 0 0 1 1 1 0 0 0
4 0 1 0 0 1 0 1 0
5 0 1 0 1 1 1 0 0
6 0 1 1 0 0 1 1 0
7 0 1 1 1 1 0 0 0
8 1 0 0 0 1 0 1 0
9 1 0 0 1 1 1 0 1

10 1 0 1 0 0 1 1 0
11 1 0 1 1 1 0 0 1
12 1 1 0 0 1 0 1 1
13 1 1 0 1 1 1 0 0
14 1 1 1 0 d d d d
15 1 1 1 1 d d d d

1

1

1

d

d

00 01 11 10

00

01

11

10

s2 s1
11

s2

s1

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

s0 x

s0

x

 __ _
z = s2 s1 x + s2 s1 x

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Next Time

• more finite state machine design

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

