
CMSC 313 Lecture 22

• Announcement: in-class lab next time

• Last time:
Quine-McCluskey tabular method for circuit simplification

Flip-flops

• Latches vs flip-flops

• Edge-triggered flip-flops
• Finite state machines
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Latches vs Flip-Flops

• Latch
Output changes right after the input changes

No reference to clocking event

M&H’s “SR flip-flop” if often called an SR latch in other texts.

• Level-Sensitive Latch
A latch that operates only when the clock is high or only when low

M&H’s “clocked SR flip-flop” is a level sensitive latch

• Flip-Flop
Reserved for circuits that record the input only during clocking events

The output of the flip-flop does not change during this clocking event

M&H’s “master-slave flip-flop” fits this definition
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J-K Flip-Flops

• Allows both “set” and “reset” to be 1

• When both J and K are 1, the output toggles
• If the clock is high, “endless toggle” occurs

• Master-slave J-K flip-flops solve the endless toggle 
problem, but has the ones-catching problem

• Use edge-triggered flip-flops to eliminate the ones-
catching problem.
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Appendix A: Digital LogicA-56

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring
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Appendix A: Digital LogicA-57
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Clocked T Flip-Flop
• The presence of a constant 1 at J and K means that the flip-flop

will change its state from 0 to 1 or 1 to 0 each time it is clocked
by the T (Toggle) input.
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Edge-Triggered Flip-Flops

• Records input during a low-to-high (positive edge) 
or a high-to-low (negative edge) clock transition

• Signal must be stable before “setup time” and 
continue to be stable for “hold time”

setup time

hold time
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Negative Edge-Triggered D Flip-Flop
• When the clock is

high, the two input
latches output 0, so
the Main latch re-
mains in its previous
state, regardless of
changes in D.

•  When the clock goes
high-to-low, values in
the two input latches
will affect the state of
the Main latch.

•  While the clock is
low, D cannot affect
the Main latch.
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Master-Slave vs Edge-Triggered

• Master-slave flip-flops record the input in the slave 
when the clock goes from high to low

• Are master-slave flip-flops negative edge-triggered 
flip-flops?

Some textbooks say “yes” others say “no”

Master-slave JK flip-flops have the ones catching problem 
(momentary high signal at J when the clock is high is “caught” and 
recorded.)

Master-slave D flip-flops do not have the ones catching problem
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Example: Modulo-4 Counter
• Counter has a clock input (CLK) and  a RESET input.

•  Counter has two output lines, which take on values of 00, 01, 10,
and 11 on subsequent clock cycles.
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Appendix A: Digital LogicA-60
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State Table for Mod-4 Counter

Present state

Input RESET

0 1

A B/01 A/00
B C/10 A/00

Next state Output

C D/11 A/00
D A/00 A/00
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State Assignment for Mod-4 Counter

Present
state (St)

Input RESET

0 1

A:00 01/01 00/00
B:01 10/10 00/00

C:10 11/11 00/00
D:11 00/00 00/00
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Truth Table for Mod-4 Counter
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Logic Design for Mod-4 Counter
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CMSC 313, Computer Organization & Assembly Language Programming Section 0101

Fall 2003

DigSim Assignment 1: A Finite State Machine

Due: November 25, 2003

Objective: The objective of this assignment is to implement a finite state machine using DigSim.

Assignment: Consider the finite state machine represented below as a transition diagram1:
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This finite state machine starts in state q0 and has one input bit and one output bit. The
output bit is 1 if the input sequence up to the current point ends with 010 as long as the sequence
100 has never been seen. For example, the machine outputs 1 after reading 00011010, but outputs
0 after reading 110110010. (Verify for yourself that the transition diagram fits the description.)

Your assignment is to implement this finite state machine in DigSim. You must:

1. Use three D flip-flops to store the 7 states of the machine. State q0 will be represented as
000, q1 = 001, q2 = 010, . . . , q6 = 110. The bit pattern 111 is not used.

2. Let s2, s1, s0 be the state bits stored in the D flip-flops, x be the input bit and z be the output
bit. Fill in the attached truth table for the next state bits s

′

2, s
′

1, s
′

0 and the output bit z.

3. For s
′

2
, s

′

1
, s

′

0
and z, use Karnaugh maps to obtain simplified SOP or POS Boolean formulas.

4. Implement the finite state machine in DigSim. You should study the “Sequence Detector”
example in DigSim (use “Open example” under the File menu) for suggestions on the layout
of your finite state machine.

Implementation notes:

• Label the switches and flip-flops in your circuit appropriately.

• If you need a 4-input OR gate, you need to use two layers of 2-input or 3-input OR gates to
accomplish the same function. Ditto for 4-input AND gates.

1Adapted from Contemporary Logic Design, Randy H. Katz, Benjamin/Cummings Publishing, 1994.



• Make sure to leave time to debug your circuit. Note that to restart the finite state machine
in the 000 state, you need to save the circuit and load it back into DigSim.

• The D flip-flops in DigSim are positive-edge triggered. To change the state of the flip-flop,
change the input when the clock is low, then bring the clock from low to high. The input to
the D flip-flop when the clock changes from low to high will be stored in the flip-flop.

What to submit:

1. Make a copy of your truth-table and Karnaugh maps and submit the hard copy in class on
Tuesday November 25.

2. Save your circuit as you did in the DigSim part of Homework 4. Submit the circuit file
using the Unix submit command as in previous assignments. The submission name for this
assignment is: digsim1. The UNIX command to do this should look something like:

submit cs313_0101 digsim1 fsm.sim



Name:

Truth table:

m s2 s1 s0 x s
′

2 s
′

1 s
′

0 z

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

10 1 0 1 0

11 1 0 1 1

12 1 1 0 0

13 1 1 0 1

14 1 1 1 0 d d d d

15 1 1 1 1 d d d d
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Next Time

• in-class lab
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