
CMSC 313 Lecture 19

• Homework 4 Questions

• Combinational Logic Components
• Programmable Logic Arrays

• Introduction to Circuit Simplification

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming, section 0101
Fall 2003 Homework 4

Due: Thursday, November 6, 2003

1. (10 points) Question 3.8, page 96, Murdocca & Heuring

2. (10 points) Question 3.9, page 96, Murdocca & Heuring

3. (20 points) Read the instructions on how to run the DigSim digital simulator on the course web page:

http://www.csee.umbc.edu/~chang/cs313.f03/digsim-info.shtml

Using DigSim, wire up the following circuit diagram, play with the switches, create a text box with
your name, and save the circuit diagram. (This is the same as the circuit we used in the in-class lab.)

The file which has your circuit diagram should be a plain text file that starts with something like:

Digsim file

version 1 0

describe component TwoNandPort

pos 23 13

Use a text editor to look at the file and make sure that the file is not empty and has some data similar
to the above. Next, use DigSim to load the file and make sure that this still works. If all is well, submit
the circuit file using the Unix submit command as in previous assignments. The submission name for
this assignment is: digsim0.The UNIX command to do this should look something like:

submit cs313_0101 digsim0 xor.sim

Last Time & Before

• In-class lab: next time Tuesday 11/18

• Half adders & full adders
• Ripple carry adders vs carry lookahead adders

• Propagation delay

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix A: Digital LogicA-26

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Digital Components
• High level digital circuit designs are normally created using col-

lections of logic gates referred to as components , rather than us-
ing individual logic gates.

• Levels of integration (numbers of gates) in an integrated circuit
(IC) can roughly be considered as:

• Small scale integration (SSI): 10-100 gates.
• Medium scale integration (MSI): 100 to 1000 gates.
• Large scale integration (LSI): 1000-10,000 logic gates.
• Very large scale integration (VLSI): 10,000-upward logic

gates.
• These levels are approximate, but the distinctions are useful

in comparing the relative complexity of circuits.

Appendix A: Digital LogicA-27

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Multiplexer

0
0
1
1

0
1
0
1

A B

D0

D1

D2

D3

FD0

A

D1

D2

D3

B

F

00
01

10
11

F = A B D
0

+ A B D
1

+ A B D
2

+ A B D
3

D
at

a
In

pu
ts

Control Inputs

Appendix A: Digital LogicA-28

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

AND-OR Implementation of MUX

F

A B

D0

D1

D2

D3

Appendix A: Digital LogicA-29

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

MUX Implementation of Majority
• Principle: Use the 3 MUX control inputs to select (one at a time)

the 8 data inputs.

A C

F

000
001

010
011

B

100
101

110
111

0
0

0
1

0
1

1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
0
1
0
1
1
1

M

Appendix A: Digital LogicA-30

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

4-to-1 MUX Implements 3-Var Function
• Principle: Use the A and B inputs to select a pair of minterms.

The value applied to the MUX data input is selected from {0, 1,
C, C} to achieve the desired behavior of the minterm pair.

A B

F

00

01
10

11

0

1
C

C

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
1
1
0
1
1
0

F

0
0
0
0
1
1
1
1

A

0

1

C

C

Appendix A: Digital LogicA-31

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Demultiplexer

F0

A

F1

F2

F3

B

00

01
10

11

D

F 0 = D A B

F 1 = D A B

F 2 = D A B

F 3 = D A B

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

A B

0
0
0
0
1
0
0
0

F0

0
0
0
0
0
1
0
0

F1

0
0
0
0
0
0
1
0

F2

0
0
0
0
0
0
0
1

F3

0
0
0
0
1
1
1
1

D

Appendix A: Digital LogicA-32

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Gate-Level Implementation of DEMUX

A B

F0

F1

F2

F3

D

Appendix A: Digital LogicA-33

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Decoder

D0

A D1

D2

D3

B

00
01

10
11

0
0
1
1

0
1
0
1

A B

1
0
0
0

D0

0
1
0
0

D1

0
0
1
0

D2

0
0
0
1

D3

D3 = A BD1 = A B D2 = A BD0 = A B

Enable

Enable = 1

0
0
1
1

0
1
0
1

A B

0
0
0
0

D0

0
0
0
0

D1

0
0
0
0

D2

0
0
0
0

D3

Enable = 0

Appendix A: Digital LogicA-34

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Gate-Level Implementation of Decoder

A

B

D0

D1

D2

D3

Enable

Appendix A: Digital LogicA-35

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Decoder Implementation of Majority
Function

A

C
M

000
001

010
011

B
100
101

110
111

• Note that the en-
able input is not
always present.
We use it when
discussing de-
coders for
memory.

Appendix A: Digital LogicA-36

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Priority Encoder
• An encoder translates a set of inputs into a binary encoding.
• Can be thought of as the converse of a decoder.
• A priority encoder imposes an order on the inputs.
• Ai has a higher priority than A i+1

0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
1
1
1
1
0
0
0
0
0
0
0
0

F0 F1

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

A0

0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

A1

0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

A2

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

A3

F0

F1

00
01

10
11

A0

A1

A2

A3

F0 = A0 A1 A3 + A0 A1 A2

F1 = A0 A2 A3 + A0 A1

Appendix A: Digital LogicA-37

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

AND-OR Implementation of Priority
Encoder

F0
A1

A2

A3

F1

A0

Appendix A: Digital LogicA-38

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Programmable
Logic Array

F0

A B C

Fuses

F1

AND matrix

OR matrix

• A PLA is a
customizable AND
matrix followed by
a customizable
OR matrix.

• Black box view of
PLA:

A
B
C

PLA
F0

F1

Appendix A: Digital LogicA-39

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Simplified
Representation

of PLA
Implementation

of Majority
Function

F0

A B C

F1

(Majority)

A B C

A B C

A B C

A B C

(Unused)

Appendix A: Digital LogicA-41

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Full Adder

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

Bi Ci

0
0
0
0
1
1
1
1

Ai

0
1
1
0
1
0
0
1

Si

0
0
0
1
0
1
1
1

Ci+1

Full
adder

Bi Ai

Ci

Ci+1

Si

Appendix A: Digital LogicA-43

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

PLA Realization
of Full Adder

Sum

A B Cin

Cout

Appendix B: Reduction of Digital LogicB-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Reduction (Simplification) of Boolean
Expressions

• It is usually possible to simplify the canonical SOP (or POS)
forms.

• A smaller Boolean equation generally translates to a lower gate
count in the target circuit.

• We cover three methods: algebraic reduction, Karnaugh map re-
duction, and tabular (Quine-McCluskey) reduction.

Appendix B: Reduction of Digital LogicB-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Karnaugh Maps: Venn Diagram Rep-
resentation of Majority Function

• Each distinct region in the “Universe” represents a minterm.

• This diagram can be transformed into a Karnaugh Map .

ABC

ABC’ AB’CAB’C’

A’BC

A’BC’ A’B’C

A’B’C’
B

A

C

Appendix B: Reduction of Digital LogicB-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

K-Map for Majority Function
• Place a “1” in each cell that corresponds to that minterm.

• Cells on the outer edge of the map “wrap around”

A B C FMinterm

Index

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

0

1

2

3

4

5

6

7

1

0

0-side 1-side

0

A balance tips to the left or
right depending on whether

there are more 0’s or 1’s.

00 01 11 10

0

1

AB
C

1

11 1

Appendix B: Reduction of Digital LogicB-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Adjacency Groupings for Majority
Function

• F = BC + AC + AB

00 01 11 10

0

1

AB
C

1

11 1

Appendix B: Reduction of Digital LogicB-10

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Minimized AND-OR Majority Circuit

• F = BC + AC + AB

• The K-map approach yields the same minimal two-level form as
the algebraic approach.

F

A B C

Appendix B: Reduction of Digital LogicB-11

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

K-Map Groupings
• Minimal grouping is on the left, non-minimal (but logically equiva-

lent) grouping is on the right.

• To obtain minimal grouping, create smallest groups first.

00 01 11

1

01

11

11

10
AB

1

CD

10

00

01 11

01

11

10
CD

10

00

00
AB

1

1

1

1

1

2

3

4

1

11

1

1

1

1

1

2

4

5
1

F = A B C + A C D +
 A B C + A C D

F = B D + A B C + A C D +
 A B C + A C D

3

Richard Chang

Example Requiring More Rules

0000

1100

01

00

10

11

00 01 11 10

00

01

11

10

AB
CD 11

A

B

D

C

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix B: Reduction of Digital LogicB-12

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

K-Map Corners are Logically Adjacent

00 01 11

1

1

1

01

11

1

1

1

1

1

10
AB

1

CD

00

10

F = B C D + B D + A B

Appendix B: Reduction of Digital LogicB-13

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

K-Maps and Don’t Cares
• There can be more than one minimal grouping, as a result of

don’t cares.

00 01 11

1

01

11

11

10
AB

1

CD

10 d

00 d

F = B C D + B D

01 11

1

01

11

11

10

1

CD

10 d

00 d

00
AB

F = A B D + B D

1 1

Gray Code

• Two bits: 00, 01, 11, 10

• Three bits: 000, 001, 011, 010, 110, 111, 101, 100
• Successive bit patterns only differ at 1 position

• For Karnaugh maps, adjacent 1’s represent
minterms that can be simplified using the rule:
 ABC’ + A’BC’ = (A + A’)BC’ = 1 BC’ = BC’

00 01 11 10

0

1

AB
C 11

A

B

1 1

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Karnaugh Maps

Implicant: rectangle with 1, 2, 4, 8, 16 ... 1’s

Prime Implicant: an implicant that cannot be
extended into a larger implicant

Essential Prime Implicant: the only prime implicant
that covers some 1

K-map Algorithm (not from M&H):

1. Find ALL the prime implicants. Be sure to check
every 1 and to use don’t cares.

2. Include all essential prime implicants.

3. Try all possibilities to find the minimum cover for
the remaining 1’s.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

K-map Example

1010

0dd0

11

10

10

1d

00 01 11 10

00

01

11

10

AB
CD 11

A

B

D

C

1010

0dd0

11

10

10

1d

00 01 11 10

00

01

11

10

AB
CD 11

A

B

D

C

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

 A’B + AC’D + AB’D’

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Notes on K-maps

• Also works for POS

• Takes 2n time for formulas with n variables

• Only optimizes two-level logic
Reduces number of terms, then number of literals in each term

• Assumes inverters are free

• Does not consider minimizations across functions
• Circuit minimization is generally a hard problem

• Quine-McCluskey can be used with more variables

• CAD tools are available if you are serious

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Next Time

• Continue Circuit Simplification

• Homework 4 due
• Homework 5 assigned

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

