
CMSC 313 Lecture 19

• Homework 4 Questions

• Combinational Logic Components
• Programmable Logic Arrays

• Introduction to Circuit Simplification
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CMSC 313, Computer Organization & Assembly Language Programming, section 0101
Fall 2003 Homework 4

Due: Thursday, November 6, 2003

1. (10 points) Question 3.8, page 96, Murdocca & Heuring

2. (10 points) Question 3.9, page 96, Murdocca & Heuring

3. (20 points) Read the instructions on how to run the DigSim digital simulator on the course web page:

http://www.csee.umbc.edu/~chang/cs313.f03/digsim-info.shtml

Using DigSim, wire up the following circuit diagram, play with the switches, create a text box with
your name, and save the circuit diagram. (This is the same as the circuit we used in the in-class lab.)

The file which has your circuit diagram should be a plain text file that starts with something like:

# Digsim file

version 1 0

describe component TwoNandPort

pos 23 13

Use a text editor to look at the file and make sure that the file is not empty and has some data similar
to the above. Next, use DigSim to load the file and make sure that this still works. If all is well, submit
the circuit file using the Unix submit command as in previous assignments. The submission name for
this assignment is: digsim0.The UNIX command to do this should look something like:

submit cs313_0101 digsim0 xor.sim



Last Time & Before

• In-class lab: next time Tuesday 11/18

• Half adders & full adders
• Ripple carry adders vs carry lookahead adders

• Propagation delay

UMBC, CMSC313, Richard Chang <chang@umbc.edu>
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Digital Components
• High level digital circuit designs are normally created using col-

lections of logic gates referred to as components , rather than us-
ing individual logic gates.

• Levels of integration (numbers of gates) in an integrated circuit
(IC) can roughly be considered as:

• Small scale integration (SSI): 10-100 gates.
• Medium scale integration (MSI): 100 to 1000 gates.
• Large scale integration (LSI): 1000-10,000 logic gates.
• Very large scale integration (VLSI): 10,000-upward logic

gates.
• These levels are approximate, but the distinctions are useful

in comparing the relative complexity of circuits.
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AND-OR Implementation of MUX
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MUX Implementation of Majority
• Principle: Use the 3 MUX control inputs to select (one at a time)

the 8 data inputs.
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4-to-1 MUX Implements 3-Var Function
• Principle: Use the A and B inputs to select a pair of minterms.

The value applied to the MUX data input is selected from {0, 1,
C, C} to achieve the desired behavior of the minterm pair.
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Demultiplexer
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Gate-Level Implementation of DEMUX
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D0

A D1

D2

D3

B

00
01

10
11

0
0
1
1

0
1
0
1

A B

1
0
0
0

D0

0
1
0
0

D1

0
0
1
0

D2

0
0
0
1

D3

D3  =  A BD1  =  A B D2  =   A BD0  =  A B

Enable

Enable  =  1

0
0
1
1

0
1
0
1

A B

0
0
0
0

D0

0
0
0
0

D1

0
0
0
0

D2

0
0
0
0

D3

Enable  =  0



Appendix A: Digital LogicA-34

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Gate-Level Implementation of Decoder
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Decoder Implementation of Majority
Function
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Priority Encoder
• An encoder translates a set of inputs into a binary encoding.
• Can be thought of as the converse of a decoder.
• A priority encoder imposes an order on the inputs.
• Ai has a higher priority than A i+1
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AND-OR Implementation of Priority
Encoder
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Programmable
Logic Array
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PLA Realization
of Full Adder
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Reduction (Simplification) of Boolean
Expressions

• It is usually possible to simplify the canonical SOP (or POS)
forms.

•  A smaller Boolean equation generally translates to a lower gate
count in the target circuit.

•  We cover three methods: algebraic reduction, Karnaugh map re-
duction, and tabular (Quine-McCluskey) reduction.
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Karnaugh Maps: Venn Diagram Rep-
resentation of Majority Function

• Each distinct region in the “Universe” represents a minterm.

•  This diagram can be transformed into a Karnaugh Map .
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K-Map for Majority Function
• Place a “1” in each cell that corresponds to that minterm.

•  Cells on the outer edge of the map “wrap around”
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Adjacency Groupings for Majority
Function

• F = BC + AC + AB
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Minimized AND-OR Majority Circuit

• F = BC + AC + AB

• The K-map approach yields the same minimal two-level form as
the algebraic approach.
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K-Map Groupings
• Minimal grouping is on the left, non-minimal (but logically equiva-

lent) grouping is on the right.

• To obtain minimal grouping, create smallest groups first.
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Example Requiring More Rules
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K-Map Corners are Logically Adjacent
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K-Maps and Don’t Cares
• There can be more than one minimal grouping, as a result of

don’t cares.
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Gray Code

• Two bits: 00, 01, 11, 10

• Three bits: 000, 001, 011, 010, 110, 111, 101, 100
• Successive bit patterns only differ at 1 position

• For Karnaugh maps, adjacent 1’s represent 
minterms that can be simplified using the rule:
   ABC’ + A’BC’ = (A + A’)BC’ = 1 BC’ = BC’
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Karnaugh Maps

Implicant: rectangle with 1, 2, 4, 8, 16 ... 1’s

Prime Implicant: an implicant that cannot be 
extended into a larger implicant

Essential Prime Implicant: the only prime implicant 
that covers some 1

K-map Algorithm (not from M&H): 

1. Find ALL the prime implicants. Be sure to check 
every 1 and to use don’t cares.

2. Include all essential prime implicants.

3. Try all possibilities to find the minimum cover for 
the remaining 1’s.
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K-map Example
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Notes on K-maps

• Also works for POS

• Takes 2n time for formulas with n variables

• Only optimizes two-level logic
Reduces number of terms, then number of literals in each term

• Assumes inverters are free

• Does not consider minimizations across functions
• Circuit minimization is generally a hard problem

• Quine-McCluskey can be used with more variables

• CAD tools are available if you are serious

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Next Time

• Continue Circuit Simplification

• Homework 4 due
• Homework 5 assigned
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