CMSC 313 Lecture 17

• Focus Groups

- \diamond Need good sample of all types of CS students
- ◊ Mon 11/17 & Thu 11/20, 12:30p-2:00p & 6:00p-7:30p
- Announcement: in-class lab Thu 10/30
- Homework 3 Questions
- Circuits for Addition
- Midterm Exam returned

Due: October 30, 2003

- 1. (20 points) Draw schematics for the following functions using AND, OR and NOT gates. (Do not simplify the formulas.)
 - (a) X(Y+Z)
 - (b) $\overline{X} + \overline{Y}\overline{Z}$

(c)
$$\overline{X(Y+Z)}$$

- (d) W(X + YZ)
- 2. (10 points) Question A.3, page 493, Murdocca & Heuring
- 3. (10 points) Prove the Consensus Theorem $AB + \overline{A}C + BC = AB + \overline{A}C$ using the postulates and theorems of Boolean algebra (except the Consensus Theorem itself) in Table A-1 (p. 451). *Hint:* use absorption creatively.
- 4. (40 points) For each CMOS circuit below,
 - (a) Provide a truth table for the circuit's function.
 - (b) For diagram (a), write down the Sum-of-Products (SOP) Boolean formula for the truth table. For diagram (b), write down the Product-of-Sums (POS) Boolean formula.
 - (c) Simplify the SOP or POS formula using the postulates and theorems of Boolean Algebra (p. 451). Show all work.
 - (d) Draw the logic diagram of the simplified formula using AND, OR, NAND, NOR and NOT gates.

(a)

(b)

Last Time

- Postulates & Theorems of Boolean Algebra
- Periodic Table & Semiconductors
- P-N junction
- Field-Effect Transistors
- CMOS Logic Gates

- Inputs: A and B
- Outputs: S = lower bit of A + B, $c_{out} =$ carry bit

A	B	S	$c_{\rm out}$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Using Sum-of-Products: $S = \overline{A}B + A\overline{B}$, $c_{out} = AB$.
- Alternatively, we could use XOR: $S = A \oplus B$.

Full Adder

- Inputs: A, B and c_{in}
- Outputs: S = lower bit of A + B, $c_{out} =$ carry bit

A	В	$c_{\rm in}$	S	$c_{\rm out}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

• $S = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}\overline{C} + ABC = A \oplus B \oplus C.$

• $c_{\text{out}} = \text{MAJ3} = AB + BC + AC$.

Ripple Carry Adder

• Two binary numbers A and B are added from right to left, creating a sum and a carry at the outputs of each full adder for each bit position.

Principles of Computer Architecture by M. Murdocca and V. Heuring

Constructing Larger Adders

• A 16-bit adder can be made up of a cascade of four 4-bit ripplecarry adders.

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Full Subtractor

• Truth table and schematic symbol for a ripple-borrow subtractor:

a_i	b _i	<i>bor_i</i>	<i>diff_i</i>	bor _{i+1}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Ripple-Borrow Subtractor

- A ripple-borrow subtractor can be composed of a cascade of full subtractors.
- Two binary numbers A and B are subtracted from right to left, creating a difference and a borrow at the outputs of each full subtractor for each bit position.

Principles of Computer Architecture by M. Murdocca and V. Heuring

Chapter 3: Arithmetic

Combined Adder/Subtractor

• A single ripple-carry adder can perform both addition and subtraction, by forming the two's complement negative for B when subtracting. (Note that +1 is added at c_0 for two's complement.)

Carry-Lookahead Addition

$$s_{i} = \overline{a_{i}b_{i}c_{i}} + \overline{a_{i}b_{i}c_{i}} + a_{i}\overline{b_{i}c_{i}} + a_{i}b_{i}c_{i}$$

$$c_{i+1} = b_{i}c_{i} + a_{i}c_{i} + a_{i}b_{i}$$

$$c_{i+1} = a_{i}b_{i} + (a_{i} + b_{i})c_{i}$$

$$c_{i+1} = G_{i} + P_{i}c_{i}$$

$$e^{\mathbf{v}}$$

 Carries are represented in terms of G_i (generate) and P_i (propagate) expressions.

$$G_{i} = a_{i}b_{i} \text{ and } P_{i} = a_{i} + b_{i}$$

$$c_{0} = 0$$

$$c_{1} = G_{0}$$

$$c_{2} = G_{1} + P_{1}G_{0}$$

$$c_{3} = G_{2} + P_{2}G_{1} + P_{2}P_{1}G_{0}$$

$$c_{4} = G_{3} + P_{3}G_{2} + P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0}$$

Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

Chapter 3: Arithmetic

Carry Lookahead Adder

 Maximum gate delay for the carry generation is only 3. The full adders introduce two more gate delays. Worst case path is 5 gate delays.

Principles of Computer Architecture by M. Murdocca and V. Heuring

3-22

© 1999 M. Murdocca and V. Heuring

Next Time

- In-class Labs
- Homework 3 due
- Homework 4 assigned