CMSC 313 Lecture 16

- Postulates & Theorems of Boolean Algebra
- Semiconductors
- CMOS Logic Gates

Last Time

- Overview of second half of this course
- Logic gates & symbols
- Equivalence of Boolean functions, truth tables, Boolean formulas and combinational circuits
- Universality of NAND gates

Postulates of Boolean Algebra

- Commutative: AB = BA, A + B = B + A
- Associative: (AB)C = A(BC), (A+B) + C = A + (B+C)
- Distributive: A(B+C) = AB + AC, A + BC = (A+B)(A+C)
- Identity: there exists 0 and 1 such that for all A,

1A = A and 0 + A = A.

• Complement: for all A, there exists \overline{A} such that

$$A\overline{A} = 0$$
 and $A + \overline{A} = 1$

where 0 and 1 are the identity elements.

Some Theorems of Boolean Algebra

- Zero and One: 0A = 0, 1 + A = 1
- Idempotence: AA = A, A + A = A
- Involution: $\overline{\overline{A}} = A$
- DeMorgan's: $\overline{AB} = \overline{A} + \overline{B}$, $\overline{A+B} = \overline{A}\overline{B}$
- Absorption: A(A+B) = A, A+AB = A
- Consensus: $AB + \overline{A}C + BC = AB + \overline{A}C$, $(A + B)(\overline{A} + C)(B + C) = (A + B)(\overline{A} + C)$

• Idempotence:

$$A = A1$$

= $A(A + \overline{A})$
= $AA + A\overline{A}$
= $AA + 0$
= AA
$$A = 0 + A$$

= $(A\overline{A}) + A$
= $(A + A)(\overline{A} + A)$
= $(A + A)1$
= $A + A$

identity, commutative complement distributive complement commutative, identity identity complement distributive commutative, complement commutative, identity

• Zero and One:

$$0A = (A\overline{A})A$$
$$= A(A\overline{A})$$
$$= (AA)\overline{A}$$
$$= A\overline{A}$$
$$= 0$$

 $1 + A = (A + \overline{A}) + A$ $= A + (A + \overline{A})$ $= (A + A) + \overline{A}$ $= A + \overline{A}$ = 1

complement commutative associative idempotent complement complement commutative associative idempotent complement

• Absorption:

A + AB	= A1 + AB	identity, commutative
	= A(1+B)	distributive
	= A1	one
	= A	commutative, identity
A(A+B)	= AA + AB	distributive
	= A + AB	idempotent

Proof by truth table?

• Absorption: A + AB = A

A	В	AB	A + AB
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

- Proof by truth table only applies to 0-1 Boolean Algebra.
- Proof by derivation from postulates holds for any Boolean Algebra.

• Elements are the subsets of $\{a, b, c\}$:

 $\emptyset, \ \{a\}, \ \{b\}, \ \{c\}, \ \{a,b\}, \ \{a,c\}, \ \{b,c\}, \ \{a,b,c\}$

- Operations: $AB \rightarrow A \cap B$, $A + B \rightarrow A \cup B$.
- Union and intersection are commutative and associative.
- Union distributes over intersection: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- Intersection distributes over union: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- Identity: $0 = \emptyset$, $1 = \{a, b, c\}$, $\{a, b, c\} \cap A = A$ and $\emptyset \cup A = A$.
- Complement: $\overline{A} = \{a, b, c\} A$, $A \cap \overline{A} = \emptyset$ and $A \cup \overline{A} = \{a, b, c\}$.
- All postulates hold. Therefore, all derived theorems also hold.

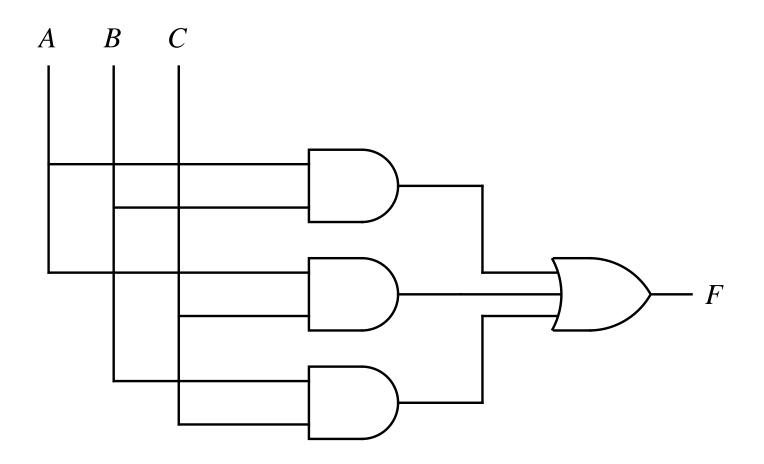
• Simplify MAJ3 using the postulates and theorems of Boolean Algebra MAJ3(A, B, C)

$$= \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC$$
SOP form
$$= \overline{ABC} + A\overline{BC} + AB\overline{C} + ABC + ABC + ABC$$
idempotent
$$= \overline{ABC} + ABC + A\overline{BC} + ABC + AB\overline{C} + ABC$$
commutative
$$= (\overline{A} + A)BC + (\overline{B} + B)AC + (\overline{C} + C)AB$$
distributive
$$= 1BC + 1AC + 1AB$$
complement
$$= BC + AC + AB$$
identity

• Resulting circuit uses fewer gates.

The Algebraic Method

• This majority circuit is functionally equivalent to the previous majority circuit, but this one is in its minimal two-level form:



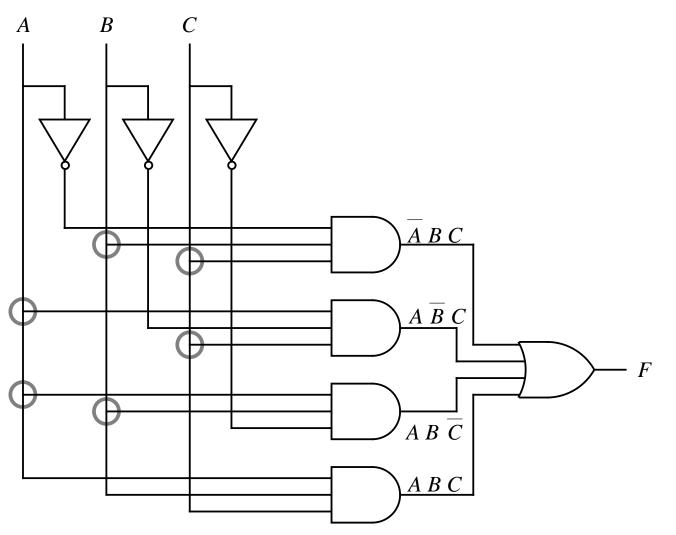
Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuring

B-6

AND-OR Implementation of Majority

 Gate count is 8, gate input count is 19.



Principles of Computer Architecture by M. Murdocca and V. Heuring

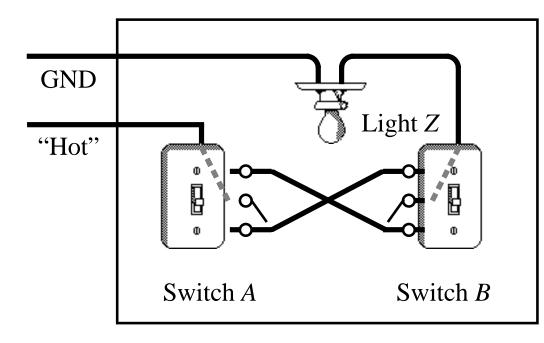
© 1999 M. Murdocca and V. Heuring

How do we make gates???

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

A Truth Table

- Developed in 1854 by George Boole.
- Further developed by Claude Shannon (Bell Labs).
- Outputs are computed for all possible input combinations (how many input combinations are there?)
- Consider a room with two light switches. How must they work?



-	Inj	puts	Output
	A	В	Ζ
	0 0	0	0
	0	1	1
	1	0	1
	1	1	0

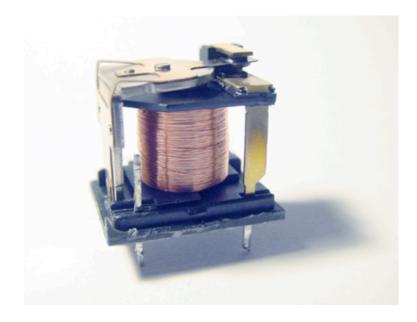
Principles of Computer Architecture by M. Murdocca and V. Heuring

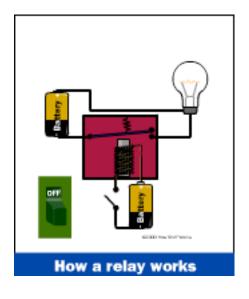
© 1999 M. Murdocca and V. Heuring

A-5

Electrically Operated Switch

• Example: a relay





source: http://www.howstuffworks.com/relay.htm

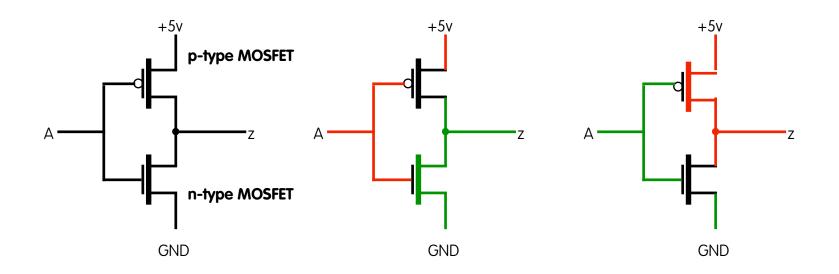
UMBC, CMSC313, Richard Chang <chang@umbc.edu>

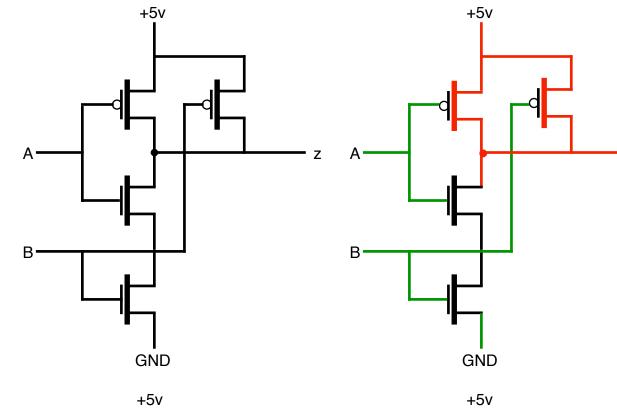
Semiconductors

- Electrical properties of silicon
- Doping: adding impurities to silicon
- Diodes and the P-N junction
- Field-effect transistors

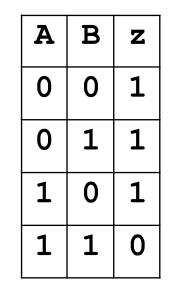
An Inverter using MOSFET

- CMOS = complementary metal oxide semiconductor
- P-type transistor conducts when gate is low
- N-type transistor conducts when gate is high

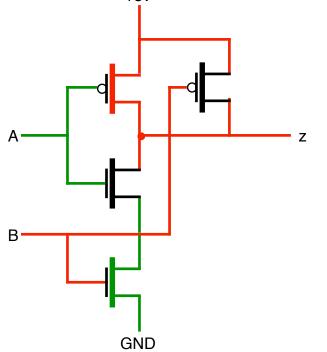


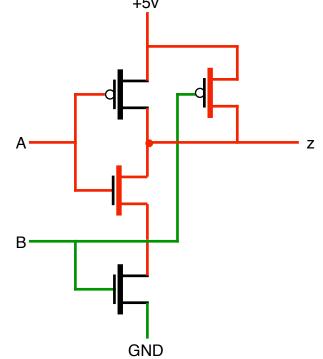


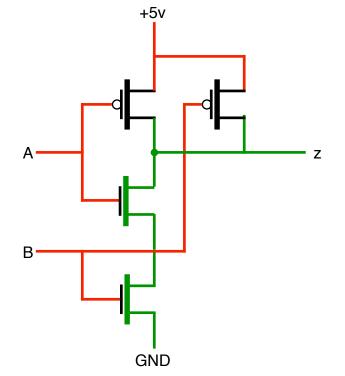
NAND GATE

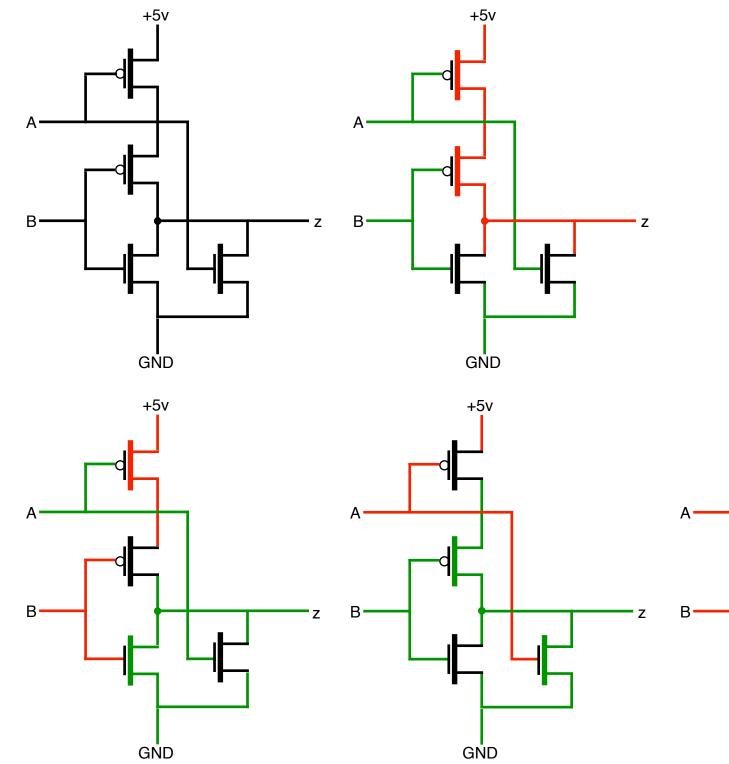


Z



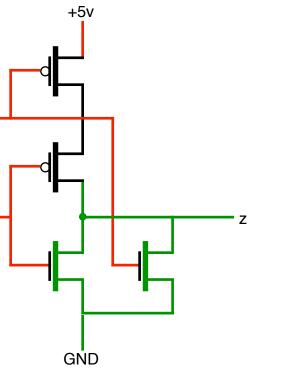






NOR GATE

A	B	Z
0	0	1
0	1	0
1	0	0
1	1	0



CMOS Logic vs Bipolar Logic

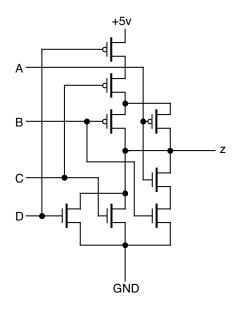
- MOSFET transistors are easier to miniaturize
- CMOS logic has lower current drain
- CMOS logic is easier to manufacture

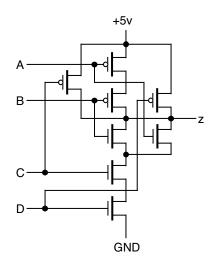
Due: October 30, 2003

- 1. (20 points) Draw schematics for the following functions using AND, OR and NOT gates. (Do not simplify the formulas.)
 - (a) X(Y+Z)
 - (b) $\overline{X} + \overline{Y}\overline{Z}$

(c)
$$\overline{X(Y+Z)}$$

- (d) W(X + YZ)
- 2. (10 points) Question A.3, page 493, Murdocca & Heuring
- 3. (10 points) Prove the Consensus Theorem $AB + \overline{A}C + BC = AB + \overline{A}C$ using the postulates and theorems of Boolean algebra (except the Consensus Theorem itself) in Table A-1 (p. 451). *Hint:* use absorption creatively.
- 4. (40 points) For each CMOS circuit below,
 - (a) Provide a truth table for the circuit's function.
 - (b) For diagram (a), write down the Sum-of-Products (SOP) Boolean formula for the truth table. For diagram (b), write down the Product-of-Sums (POS) Boolean formula.
 - (c) Simplify the SOP or POS formula using the postulates and theorems of Boolean Algebra (p. 451). Show all work.
 - (d) Draw the logic diagram of the simplified formula using AND, OR, NAND, NOR and NOT gates.





(a)

(b)

Next time

Circuits for Addition