CMSC 313 Lecture 15

- Good-bye Assembly Language Programming
- Overview of second half on Digital Logic
- DigSim Demo

Good-bye Assembly Language

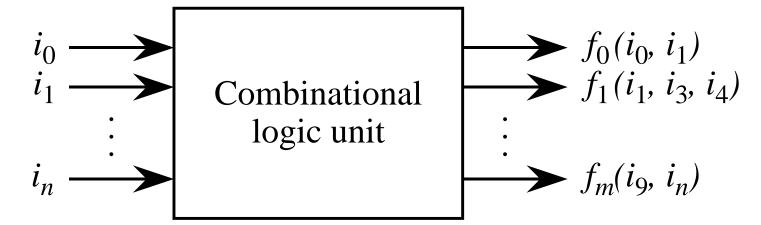
- What a pain!
- Understand pointers better
- Execution environment of Unix processes
 - the stack
 - virtual memory
- Linking & loading

Some Definitions

- Combinational logic: a digital logic circuit in which logical decisions are made based only on combinations of the inputs. e.g. an adder.
- Sequential logic: a circuit in which decisions are made based on combinations of the current inputs as well as the past history of inputs. e.g. a memory unit.
- Finite state machine: a circuit which has an internal state, and whose outputs are functions of both current inputs and its internal state. e.g. a vending machine controller.

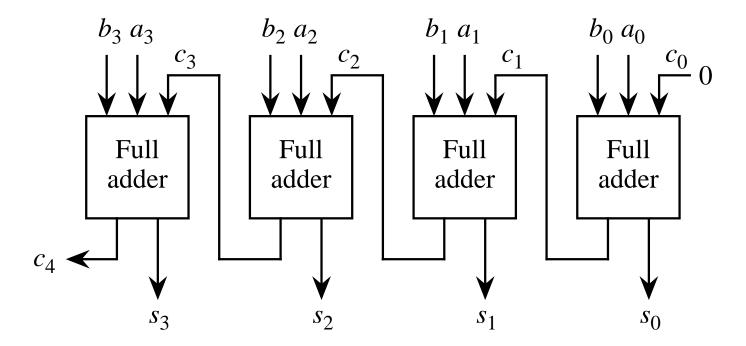
The Combinational Logic Unit

- Translates a set of inputs into a set of outputs according to one or more mapping functions.
- Inputs and outputs for a CLU normally have two distinct (binary)
 values: high and low, 1 and 0, 0 and 1, or 5 V and 0 V for example.
- The outputs of a CLU are strictly functions of the inputs, and the outputs are updated immediately after the inputs change. A set of inputs $i_0 i_n$ are presented to the CLU, which produces a set of outputs according to mapping functions $f_0 f_{m'}$



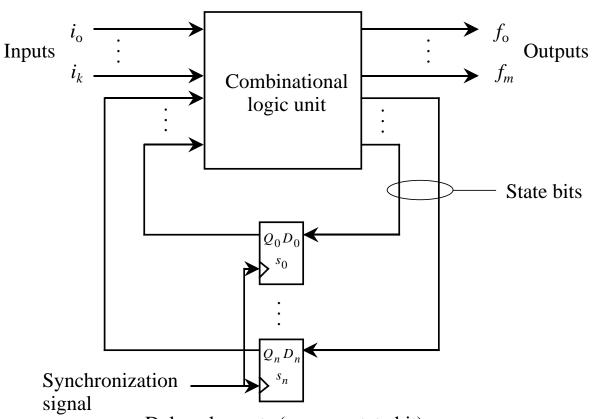
Ripple Carry Adder

• Two binary numbers A and B are added from right to left, creating a sum and a carry at the outputs of each full adder for each bit position.



Classical Model of a Finite State Machine

An FSM is composed of a combinational logic unit and delay elements (called flip-flops) in a feedback path, which maintains state information.



Vending Machine State Transition Diagram

1/0 = Dispense/Do notdispense merchandise A dime is 1/0 = Return/Do not returna nickel in change inserted O/1101/0 = Return/Do notN/100return a dime in change N/000 \boldsymbol{B} D/000 Q/101 15 ¢ Q/111 N/000 N/000D/000 N = NickelQ/111D = DimeD/100Q = Quarter10¢ Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

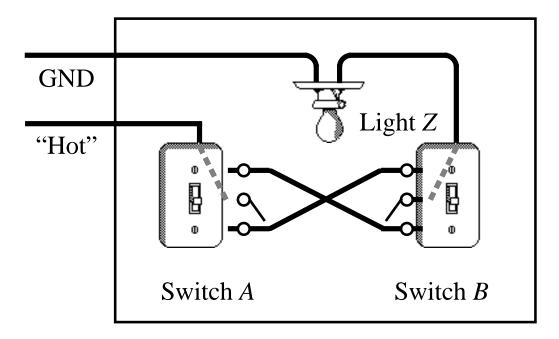
Course Syllabus

We will follow two textbooks: *Principles of Computer Architecture*, by Murdocca and Heuring, and *Linux Assembly Language Programming*, by Neveln. The following schedule outlines the material to be covered during the semester and specifies the corresponding sections in each textbook.

Date	Торіс	м&н	Neveln	Assign	Due
Th 08/28	Introduction & Overview	1.1-1.8	1.1-1.6		
Tu 09/02	Data Representation I	2.1-2.2, 3.1-3.3	2.4-2.7, 3.6-3.8	hw1	
Th 09/04	Data Representation II				
Tu 09/09	i386 Assembly Language I		3.10-3.13, 4.1-4.8	hw2, proj1	hw1
Th 09/11	i386 Assembly Language II		6.1-6.5		
Tu 09/16	i386 Assembly Language III			proj2	hw2, proj1
Th 09/18	i386 Assembly Language IV				
Tu 09/23	Examples			proj3	proj2
Th 09/25	Machine Language		5.1-5.7		
Tu 09/30	Compiling, Assembling & Linking	5.1-5.3			
Th 10/02	Subroutines		7.1-7.4		
Tu 10/07	The Stack & C Functions			proj4	proj3
Th 10/09	Linux Memory Model	7.7	8.1-8.8		
Tu 10/14	Interrupts & System Calls		9.1-9.8		proj4
Th 10/16	Midterm Exam				
Tu 10/21	Introduction to Digital Logic	A.1-A.2	3.1-3.3		
Th 10/23	Transistors & Logic Gates	A.3-A.4		hw3	
Tu 10/28	In-class Lab I				
Th 10/30	Boolean Functions & Truth Tables	A.5-A.9		hw4	hw3
Tu 11/04	Circuits for Addition	3.5			
Th 11/06	Circuit Simplification I	B.1-B.2		hw5	hw4
Tu 11/11	Combinational Logic Components	A.10			
Th 11/13	Flip Flops	A.11		digsim1	hw5
Tu 11/18	In-class Lab II				
Th 11/20	Finite State Machines	A.12-A.15			
Tu 11/25	Circuit Simplification II	B.3			digsim1
Th 11/27	Thanksgiving break				
Tu 12/02	Finite State Machine Design			digsim2	
Th 12/04	More Finite State Machine Design				
Tu 12/09	I/O & Memory	7.1-7.6, 8.1-8.3			digsim2
Tu 12/16	Final Exam 10:30am-12:30pm				

A Truth Table

- Developed in 1854 by George Boole.
- Further developed by Claude Shannon (Bell Labs).
- Outputs are computed for all possible input combinations (how many input combinations are there?)
- Consider a room with two light switches. How must they work?



Inputs	Output
--------	--------

\boldsymbol{A}	В	Z
0 0 1	0 1 0	0 1 1
1	1	0

Alternate Assignment of Outputs to Switch Settings

We can make the assignment of output values to input combinations any way that we want to achieve the desired input-output behavior.

Inputs	Output
mpuis	Outpu

A	В	Z
0	0	1
0	1	0
1	0	0
1	1	1

Truth Tables Showing All Possible Functions of Two Binary Variables

Innuta

The more frequently used functions have names:
 AND, XOR, OR,
 NOR, XOR, and
 NAND. (Always use upper case spelling.)

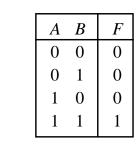
Inp	outs	_			Out	puts			
A	В	False	AND	\overline{AB}	A	$\overline{A}B$	В	XOR	OR
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1
	A 0 0 1	0 0 0 1 1 0	A B False 0 0 0 0 1 0 1 0 0	A B False AND 0 0 0 0 0 1 0 0 1 0 0 0	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$

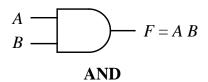
1111	puis	Outputs							
A	В	NOR	XNOR	\overline{B}	$A + \overline{B}$	\overline{A}	$\overline{A} + B$	NAND	True
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

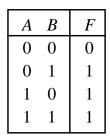
Outpute

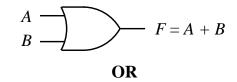
Logic Gates and Their Symbols

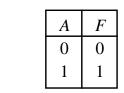
- Logic symbols shown for AND, OR, buffer, and NOT Boolean functions.
- Note the use of the "inversion bubble."
- (Be careful about the "nose" of the gate when drawing AND vs. OR.)

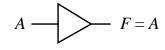






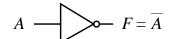






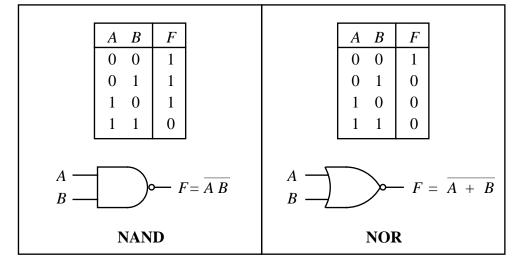
Buffer

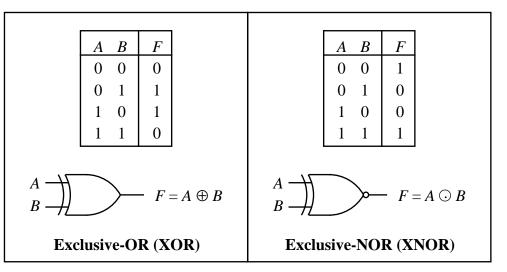
A	F
0	1
1	0



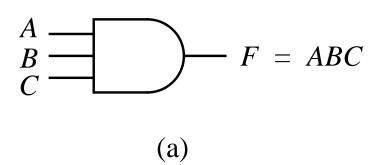
NOT (Inverter)

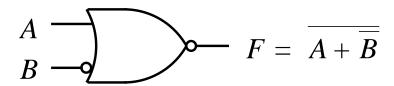
Logic Gates and their Symbols (cont')





Variations of Logic Gate Symbols





(b)

$$\begin{array}{c}
A \\
B
\end{array}$$

$$\begin{array}{c}
A + B \\
A + B
\end{array}$$
(c)

(a) 3 inputs

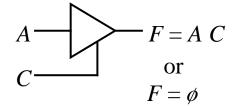
(b) A Negated input

(c) Complementary outputs

Tri-State Buffers

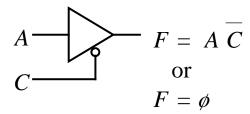
• Outputs can be 0, 1, or "electrically disconnected."

C	\boldsymbol{A}	F
0	0	ø
0	1	ø
1	0	0
1	1	1



Tri-state buffer

C	\boldsymbol{A}	F
0	0	0
0	1	1
1	0	ø
1	1	ø



Tri-state buffer, inverted control

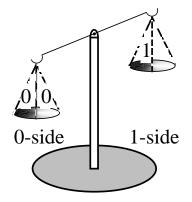
Sum-of-Products Form: The Majority Function

• The SOP form for the 3-input majority function is:

$$M = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} = m3 + m5 + m6 + m7 = \Sigma$$
 (3, 5, 6, 7).

- Each of the 2ⁿ terms are called *minterms*, ranging from 0 to 2ⁿ 1.
- Note relationship between minterm number and boolean value.

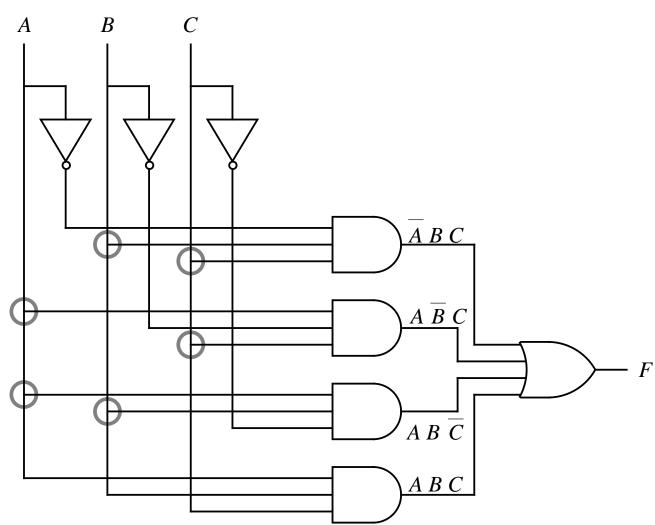
Minterm Index	A	В	C	F
писл				
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1



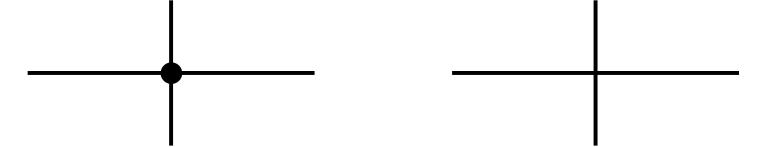
A balance tips to the left or right depending on whether there are more 0's or 1's.

AND-OR Implementation of Majority

 Gate count is 8, gate input count is 19.

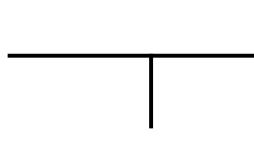


Notation Used at Circuit Intersections

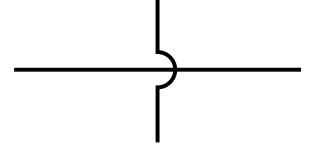


Connection

No connection



Connection



No connection

Sum of Products (a.k.a. disjunctive normal form)

- OR (i.e., sum) together rows with output 1
- AND (i.e., product) of variables represents each row e.g., in row 3 when $x_1=0$ AND $x_2=1$ AND $x_3=1$ or when $\overline{x_1}\cdot x_2\cdot x_3=1$
- MAJ3 $(x_1, x_2, x_3) = \overline{x_1}x_2x_3 + x_1\overline{x_2}x_3 + x_1x_2\overline{x_3} + x_1x_2x_3 = \sum m(3, 5, 6, 7)$

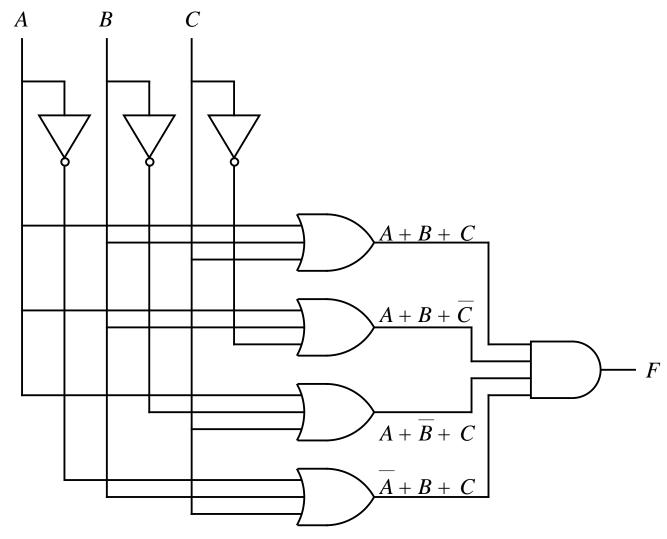
	x_1	x_2	x_3	MAJ3
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

Product of Sums (a.k.a. conjunctive normal form)

- AND (i.e., product) of rows with output 0
- OR (i.e., sum) of variables represents negation of each row e.g., NOT in row 2 when $x_1=1$ OR $x_2=0$ OR $x_3=1$ or when $x_1+\overline{x_2}+x_3=1$
- MAJ3 $(x_1, x_2, x_3) = (x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x_3})(x_1 + \overline{x_2} + x_3)(\overline{x_1} + x_2 + x_3)$ = $\prod M(0, 1, 2, 4)$

	x_1	x_2	x_3	MAJ3
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

OR-AND Implementation of Majority



Equivalences

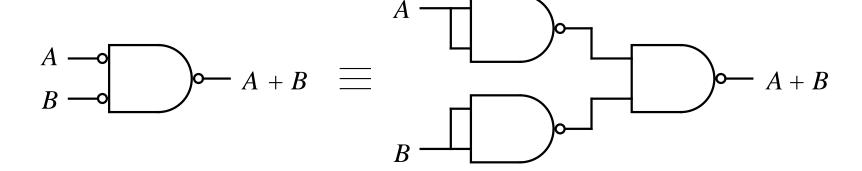
- Every Boolean function can be written as a truth table
- Every truth table can be written as a Boolean formula (SOP or POS)
- Every Boolean formula can be converted into a combinational circuit
- Every combinational circuit is a Boolean function
- Later you might learn other equivalencies: finite automata ≡ regular expressions computable functions ≡ programs

Universality

- Every Boolean function can be written as a Boolean formula using AND,
 OR and NOT operators.
- Every Boolean function can be implemented as a combinational circuit using AND, OR and NOT gates.
- Since AND, OR and NOT gates can be constructed from NAND gates,
 NAND gates are universal.

All-NAND Implementation of OR

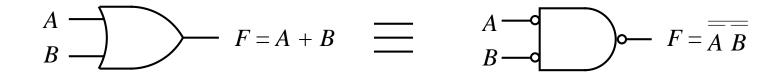
NAND alone implements all other Boolean logic gates.



DeMorgan's Theorem

A B	A B		$\overline{A + B} = \overline{A} \overline{B}$	
0 0	1	1	1	1
0 1	1	1	0	0
1 0	1	1	0	0
1 1	0	0	0	0

DeMorgan's theorem: $A + B = \overline{A + B} = \overline{A B}$



DigSim

- Java applet/application that simulates digital logic
- Not for industrial use, good enough for us
- Advantages: FREE, runs on most platforms
- Disadvantages: slow, timing issues, saving issues

DigSim Assignment 3: J-K Flip-Flops

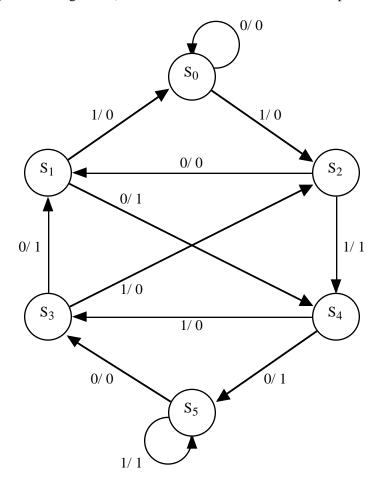
Due: Tuesday May 14, 2002

Objective

The objective of this assignment is to implement a finite state machine using J-K flip-flops.

Assignment

Consider the following transition diagram (from *Contemporary Logic Design*, Randy H. Katz, Benjamin-Cummings Publishing, 1994) for a finite state machine with 1 input bit and 1 output bit:



Your assignment is to implement this finite state machine using J-K flip flops. Assume that the state assignments are 000 for S₀, 001 for S₁, 010 S₂, 011 for S₃, 100 for S₄, and 101 for S₅.

- 1. In the truth table on the next page, let A, B and C be the current states and A', B' and C' be the next states stored in the J-K flip flops. (E.g., S₄ is assigned A=1, B=0 and C=0.) We also use D for the 1 bit input. Fill in the rest of the truth table using the excitation table for J-K flip flops. For example, in row 9, flip-flop A is currently storing 1 and must store 0 in the next state. To achieve this, we look at the 10 entry of the excitation table and note that the J input to flip-flop A (call it JA) can be set to anything, but the K input, KA, must be set to 1.
- 2. Use the Karnaugh maps provided to simplify the Boolean formulas for the J and K inputs to each J-K flip flop and for the output value z.
- 3. Implement the resulting circuit in DigSim.

Next time

• Transistors & Gates