CMSC 313 Lecture 15

- **• Good-bye Assembly Language Programming**
- **•Overview of second half on Digital Logic**
- **•DigSim Demo**

Good-bye Assembly Language

- **•What a pain!**
- **•Understand pointers better**

• Execution environment of Unix processes

- **the stack**
- **virtual memory**
- **• Linking & loading**

Some Definitions

- **• Combinational logic: a digital logic circuit in which logical decisions are made based only on combinations of the inputs. e.g. an adder.**
- **• Sequential logic: a circuit in which decisions are made based on combinations of the current inputs as well as the past history of inputs. e.g. a memory unit.**
- **• Finite state machine: a circuit which has an internal state, and whose outputs are functions of both current inputs and its internal state. e.g. a vending machine controller.**

The Combinational Logic Unit

- **Translates a set of inputs into a set of outputs according to one or more mapping functions.**
- **Inputs and outputs for a CLU normally have two distinct (binary) values: high and low, 1 and 0, 0 and 1, or 5 V and 0 V for example.**
- **The outputs of a CLU are strictly functions of the inputs, and the outputs are updated immediately after the inputs change. A set of** inputs $i_0 - i_n$ are presented to the CLU, which produces a set of outputs according to mapping functions $f_0 - f_m$.

Ripple Carry Adder

• Two binary numbers A and B are added from right to left, creating a sum and a carry at the outputs of each full adder for each bit position.

Principles of Computer Architecture by M. Murdocca and V. Heuring **Computer Architecture by M. Murdocca** and V. Heuring **Computer Architecture by M. Murdocca** and V. Heuring

Classical Model of a Finite State Machine

• An FSM is composed of a combinational logic unit and delay elements (called flip-flops) in a feedback path, which maintains state information.

A-71 Appendix A: Digital Logic

Vending Machine State Transition Diagram

Course Syllabus

We will follow two textbooks: *Principles of Computer Architecture,* by Murdocca and Heuring, and *Linux* Assembly Language Programming, by Neveln. The following schedule outlines the material to be covered during the semester and specifies the corresponding sections in each textbook.

A Truth Table

- **Developed in 1854 by George Boole.**
- **Further developed by Claude Shannon (Bell Labs).**
- **Outputs are computed for all possible input combinations (how many input combinations are there?)**
- **Consider a room with two light switches. How must they work?**

Alternate Assignment of Outputs to Switch Settings

• We can make the assignment of output values to input combinations any way that we want to achieve the desired input-output behavior.

Inputs Output

Truth Tables Showing All Possible Functions of Two Binary Variables

• The more frequently used functions have names: AND, XOR, OR, NOR, XOR, and NAND. (Always use upper case spelling.)

Logic Gates and Their Symbols

- **Logic symbols shown for AND, OR, buffer, and NOT Boolean functions.**
- **Note the use of the "inversion bubble."**
- **(Be careful about the "nose" of the gate when drawing AND vs. OR.)**

Principles of Computer Architecture by M. Murdocca and V. Heuring **Computer Architecture by M. Murdocca** and V. Heuring **Computer Architecture by M. Murdocca** and V. Heuring

A-9 Appendix A: Digital Logic

Logic Gates and their Symbols (cont')

Principles of Computer Architecture by M. Murdocca and V. Heuring **Computer Architecture by M. Murdocca** and V. Heuring **Principles of Computer Architecture by M. Murdocca** and V. Heuring

Variations of Logic Gate Symbols

(c)

 (a) (b)

(a) 3 inputs (b) A Negated input (c) Complementary outputs

Principles of Computer Architecture by M. Murdocca and V. Heuring **Computer Architecture by M. Murdocca and V. Heuring**

Tri-State Buffers

• Outputs can be 0, 1, or "electrically disconnected."

Principles of Computer Architecture by M. Murdocca and V. Heuring **Computer Architecture by M. Murdocca and V. Heuring**

Sum-of-Products Form: The Majority Function

• The SOP form for the 3-input majority function is:

 $M = ABC + ABC + ABC + ABC + ABC = m3 + m5 + m6 + m7 = \sum (3, 5, 6, 7)$.

- **Each of the 2n terms are called minterms, ranging from 0 to 2n 1.**
- **Note relationship between minterm number and boolean value.**

A balance tips to the left or right depending on whether there are more 0's or 1's.

AND-OR Implementation of Majority

• Gate count is 8, gate input count is 19.

Notation Used at Circuit Intersections

Connection

No connection

Principles of Computer Architecture by M. Murdocca and V. Heuring **Computer Architecture by M. Murdocca and V. Heuring**

Sum of Products (a.k.a. disjunctive normal form)

- OR (i.e., sum) together rows with output 1
- AND (i.e., product) of variables represents each row e.g., in row 3 when $x_1 = 0$ AND $x_2 = 1$ AND $x_3 = 1$ or when $\overline{x_1} \cdot x_2 \cdot x_3 = 1$

•
$$
MAJ3(x_1, x_2, x_3) = \overline{x_1}x_2x_3 + x_1\overline{x_2}x_3 + x_1x_2\overline{x_3} + x_1x_2x_3 = \sum m(3, 5, 6, 7)
$$

Product of Sums (a.k.a. conjunctive normal form)

- AND (i.e., product) of rows with output 0
- OR (i.e., sum) of variables represents negation of each row e.g., NOT in row 2 when $x_1 = 1$ OR $x_2 = 0$ OR $x_3 = 1$ or when $x_1 + \overline{x_2} + x_3 = 1$
- MAJ3 $(x_1, x_2, x_3) = (x_1 + x_2 + x_3)(x_1 + x_2 + \overline{x_3})(x_1 + \overline{x_2} + x_3)(\overline{x_1} + x_2 + x_3)$ $= \prod M(0,1,2,4)$

OR-AND Implementation of Majority

- Every Boolean function can be written as a truth table
- Every truth table can be written as a Boolean formula (SOP or POS)
- Every Boolean formula can be converted into a combinational circuit
- Every combinational circuit is a Boolean function
- Later you might learn other equivalencies: finite automata \equiv regular expressions computable functions \equiv programs
- Every Boolean function can be written as a Boolean formula using AND, OR and NOT operators.
- Every Boolean function can be implemented as a combinational circuit using AND, OR and NOT gates.
- Since AND, OR and NOT gates can be constructed from NAND gates, NAND gates are universal.

All-NAND Implementation of OR

• NAND alone implements all other Boolean logic gates.

Principles of Computer Architecture by M. Murdocca and V. Heuring **Computer Architecture by M. Murdocca** and V. Heuring

DeMorgan's Theorem

DeMorgan's theorem: $A + B = \overline{A + B} = \overline{A} \overline{B}$

$$
\begin{array}{ccc}\nA & \xrightarrow{\qquad} & \\
B & \xrightarrow{\qquad} & F = A + B & \xrightarrow{\qquad} & \\
B & \xrightarrow{\qquad} & B \xrightarrow{\qquad} & \\
B & \xrightarrow{\qquad} & G \xrightarrow{\qquad} & F = \overline{A} \ \overline{B}\n\end{array}
$$

Principles of Computer Architecture by M. Murdocca and V. Heuring **Computer Architecture by M. Murdocca** and V. Heuring

DigSim

- **• Java applet/application that simulates digital logic**
- **•Not for industrial use, good enough for us**
- **•Advantages: FREE, runs on most platforms**
- **•Disadvantages: slow, timing issues, saving issues**

DigSim Assignment 3: J-K Flip-Flops

Due: Tuesday May 14, 2002

Objective

The objective of this assignment is to implement a finite state machine using J-K flip-flops.

Assignment

Consider the following transition diagram (from *Contemporary Logic Design,* Randy H. Katz, Benjamin-Cummings Publishing, 1994) for a finite state machine with 1 input bit and 1 output bit:

Your assignment is to implement this finite state machine using J-K flip flops. Assume that the state assignments are 000 for S_0 , 001 for S_1 , 010 S_2 , 011 for S_3 , 100 for S_4 , and 101 for S_5 .

- 1. In the truth table on the next page, let A, B and C be the current states and A', B' and C' be the next states stored in the J-K flip flops. (E.g., S_4 is assigned A=1, B=0 and C=0.) We also use D for the 1 bit input. Fill in the rest of the truth table using the excitation table for J-K flip flops. For example, in row 9, flip-flop A is currently storing 1 and must store 0 in the next state. To achieve this, we look at the 10 entry of the excitation table and note that the J input to flip-flop A (call it JA) can be set to anything, but the K input, KA, must be set to 1.
- 2. Use the Karnaugh maps provided to simplify the Boolean formulas for the J and K inputs to each J-K flip flop and for the output value z.
- 3. Implement the resulting circuit in DigSim.

Next time

• Transistors & Gates