
CMSC 313 Lecture 15

• Good-bye Assembly Language Programming

• Overview of second half on Digital Logic
• DigSim Demo

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Good-bye Assembly Language

• What a pain!

• Understand pointers better
• Execution environment of Unix processes

the stack

virtual memory

• Linking & loading

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Appendix A: Digital LogicA-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Some Definitions
• Combinational logic: a digital logic circuit in which logical deci-

sions are made based only on combinations of the inputs. e.g. an
adder.

• Sequential logic: a circuit in which decisions are made based on
combinations of the current inputs as well as the past history of
inputs. e.g. a memory unit.

• Finite state machine: a circuit which has an internal state, and
whose outputs are functions of both current inputs and its inter-
nal state. e.g. a vending machine controller.

Appendix A: Digital LogicA-4

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Combinational
logic unit

. . .

i0
i1

in

. . .

f0
f1

fm

(i0, i1)
(i1, i3, i4)

(i9, in)

The Combinational Logic Unit
• Translates a set of inputs into a set of outputs according to one or

more mapping functions.

• Inputs and outputs for a CLU normally have two distinct (binary)
values: high and low, 1 and 0, 0 and 1, or 5 V and 0 V for example.

• The outputs of a CLU are strictly functions of the inputs, and the
outputs are updated immediately after the inputs change. A set of
inputs i 0 – in are presented to the CLU, which produces a set of
outputs according to mapping functions f 0 – fm.

Chapter 3: Arithmetic3-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Ripple Carry Adder
• Two binary numbers A and B are added from right to left, creating

a sum and a carry at the outputs of each full adder for each bit po-
sition.

Full
adder

b0 a0

s0

Full
adder

b1 a1

s1

Full
adder

b2 a2

s2

Full
adder

b3 a3

c4

s3

0
c0c1c2c3

Appendix A: Digital LogicA-45

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Classical Model of a Finite State
Machine

• An FSM is com-
posed of a com-
binational logic
unit and delay
elements (called
flip-flops) in a
feedback path,
which maintains
state informa-
tion.

Synchronization
signal

Combinational
logic unit

. . .

. . .

Inputs Outputs

Delay elements (one per state bit)

. . .

D0Q0

DnQn

. . .

. . .

s0

sn

io

ik

fo

fm

State bits

Appendix A: Digital LogicA-71

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Vending Machine State Transition
Diagram

A B D

C

0 ¢ 5 ¢ 15 ¢

10 ¢

N/000

Q/101

Q/110

N = Nickel
D = Dime
Q = Quarter

N/100 D/110

Q/111

D/000

N/000

D/100
Q/111

D/000 N/000

A dime is
inserted

1/0 = Dispense/Do not
dispense merchandise

1/0 = Return/Do not return
a nickel in change

1/0 = Return/Do not
return a dime in change

Course Syllabus
We will follow two textbooks: Principles of Computer Architecture, by Murdocca and Heuring, and Linux

Assembly Language Programming, by Neveln. The following schedule outlines the material to be covered during the
semester and specifies the corresponding sections in each textbook.

CMSC 313, Computer Organization & Assembly Language Programming, Section 0101 Fall 2003

Date Topic M&H Neveln Assign Due
Th 08/28 Introduction & Overview 1.1-1.8 1.1-1.6
Tu 09/02 Data Representation I 2.1-2.2, 3.1-3.3 2.4-2.7, 3.6-3.8 hw1
Th 09/04 Data Representation II
Tu 09/09 i386 Assembly Language I 3.10-3.13, 4.1-4.8 hw2, proj1 hw1
Th 09/11 i386 Assembly Language II 6.1-6.5
Tu 09/16 i386 Assembly Language III proj2 hw2, proj1
Th 09/18 i386 Assembly Language IV
Tu 09/23 Examples proj3 proj2
Th 09/25 Machine Language 5.1-5.7
Tu 09/30 Compiling, Assembling & Linking 5.1-5.3
Th 10/02 Subroutines 7.1-7.4
Tu 10/07 The Stack & C Functions proj4 proj3
Th 10/09 Linux Memory Model 7.7 8.1-8.8
Tu 10/14 Interrupts & System Calls 9.1-9.8 proj4
Th 10/16 Midterm Exam
Tu 10/21 Introduction to Digital Logic A.1-A.2 3.1-3.3
Th 10/23 Transistors & Logic Gates A.3-A.4 hw3
Tu 10/28 In-class Lab I
Th 10/30 Boolean Functions & Truth Tables A.5-A.9 hw4 hw3
Tu 11/04 Circuits for Addition 3.5
Th 11/06 Circuit Simplification I B.1-B.2 hw5 hw4
Tu 11/11 Combinational Logic Components A.10
Th 11/13 Flip Flops A.11 digsim1 hw5
Tu 11/18 In-class Lab II
Th 11/20 Finite State Machines A.12-A.15
Tu 11/25 Circuit Simplification II B.3 digsim1
Th 11/27 Thanksgiving break
Tu 12/02 Finite State Machine Design digsim2
Th 12/04 More Finite State Machine Design
Tu 12/09 I/O & Memory 7.1-7.6, 8.1-8.3 digsim2
Tu 12/16 Final Exam 10:30am-12:30pm

Appendix A: Digital LogicA-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

0
0

1

1

0
1

0

1

A B

0
1

1

0

Z

Inputs Output

Switch A Switch B

“Hot”

GND

Light Z

A Truth Table
• Developed in 1854 by George Boole.

• Further developed by Claude Shannon (Bell Labs).

• Outputs are computed for all possible input combinations (how
many input combinations are there?)

• Consider a room with two light switches. How must they work?

Appendix A: Digital LogicA-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Alternate Assignment of Outputs to
Switch Settings

• We can make the assignment of output values to input combi-
nations any way that we want to achieve the desired input-out-
put behavior.

0
0
1
1

0
1
0
1

A B

1
0
0
1

Z

Inputs Output

Appendix A: Digital LogicA-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Truth Tables Showing All Possible
Functions of Two Binary Variables

• The more fre-
quently used func-
tions have names:
AND, XOR, OR,
NOR, XOR, and
NAND. (Always
use upper case
spelling.)

0

0

1

1

0

1

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

1

0

1

0

0

0

1

0

1

0

1

1

0

0

1

1

1

A B False AND A B XOR OR

0

0

1

1

0

1

0

1

1

0

0

0

1

0

0

1

1

0

1

0

1

0

1

1

1

1

0

0

1

1

0

1

1

1

1

0

1

1

1

1

A B NOR XNOR A + B NAND True

AB AB

B A A + B

Inputs Outputs

Inputs Outputs

Appendix A: Digital LogicA-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Logic Gates and Their Symbols

• Logic symbols
shown for AND, OR,
buffer, and NOT
Boolean functions.

• Note the use of the
“inversion bubble.”

• (Be careful about
the “nose” of the
gate when drawing
AND vs. OR.)

A

B
F = A B

A
0
0
1
1

B
0
1
0
1

F
0
0
0
1

AND

A
0
0
1
1

B
0
1
0
1

F
0
1
1
1

OR

A

B
F = A + B

A
0
1

F
0
1

Buffer

A
0
1

F
1
0

NOT (Inverter)

A F = A A F = A

Appendix A: Digital LogicA-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Logic Gates and their Symbols (cont’)

A

B

A
0
0
1
1

B
0
1
0
1

F
1
1
1
0

NAND

A
0
0
1
1

B
0
1
0
1

F
1
0
0
0

NOR

A

B
F = A B F = A + B

A
0
0
1
1

B
0
1
0
1

F
0
1
1
0

Exclusive-OR (XOR)

A

B
F = A ⊕ B

A
0
0
1
1

B
0
1
0
1

F
1
0
0
1

Exclusive-NOR (XNOR)

A

B
F = A ⊕ B.

Appendix A: Digital LogicA-10

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Variations of Logic Gate Symbols

(a) 3 inputs (b) A Negated input (c) Complementary outputs

A
B
C

F = ABC

(a) (b)

A

B
F = A + B

(c)

A + B

A + BA

B

Appendix A: Digital LogicA-14

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Tri-State Buffers
• Outputs can be 0, 1, or “electrically disconnected.”

C
0
0
1
1

A
0
1
0
1

F
ø
ø
0
1

Tri-state buffer

C
0
0
1
1

A
0
1
0
1

F
0
1
ø
ø

Tri-state buffer, inverted control

A F = A C

C

A

C

F = A C

F = ø F = ø
or or

Appendix A: Digital LogicA-18

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sum-of-Products Form: The Majority
Function

• The SOP form for the 3-input majority function is:

M = ABC + ABC + ABC + ABC = m3 + m5 + m6 + m7 = Σ (3, 5, 6, 7).
• Each of the 2 n terms are called minterms , ranging from 0 to 2 n - 1.
• Note relationship between minterm number and boolean value.

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

B C

0
0
0
0
1
1
1
1

A

0
0
0
1
0
1
1
1

F

0
1
2
3
4
5
6
7

A balance tips to the left or
right depending on whether
there are more 0’s or 1’s.

0-side 1-side

1

00

Minterm
Index

Appendix A: Digital LogicA-19

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

AND-OR Implementation of Majority

• Gate count is
8, gate input
count is 19.

F

A B C

A B C

A B C

A B C

A B C

Appendix A: Digital LogicA-20

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Notation Used at Circuit Intersections

No connection

No connection

Connection

Connection

Sum of Products (a.k.a. disjunctive normal form)

• OR (i.e., sum) together rows with output 1

• AND (i.e., product) of variables represents each row

e.g., in row 3 when x1 = 0 AND x2 = 1 AND x3 = 1

or when x1 · x2 · x3 = 1

• MAJ3(x1, x2, x3) = x1x2x3+x1x2x3+x1x2x3+x1x2x3 =
∑

m(3, 5, 6, 7)

x1 x2 x3 MAJ3

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

� � � � 1

Product of Sums (a.k.a. conjunctive normal form)

• AND (i.e., product) of rows with output 0

• OR (i.e., sum) of variables represents negation of each row

e.g., NOT in row 2 when x1 = 1 OR x2 = 0 OR x3 = 1

or when x1 + x2 + x3 = 1

• MAJ3(x1, x2, x3) = (x1+x2+x3)(x1+x2+x3)(x1+x2+x3)(x1+x2+x3)

=
∏

M(0, 1, 2, 4)

x1 x2 x3 MAJ3

0 0 0 0 0

1 0 0 1 0

2 0 1 0 0

3 0 1 1 1

4 1 0 0 0

5 1 0 1 1

6 1 1 0 1

7 1 1 1 1

� � � � 2

Appendix A: Digital LogicA-21

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

OR-AND Implementation of Majority

F

A B C

A + B + C

A + B + C

A + B + C

A + B + C

Equivalences

• Every Boolean function can be written as a truth table

• Every truth table can be written as a Boolean formula (SOP or POS)

• Every Boolean formula can be converted into a combinational circuit

• Every combinational circuit is a Boolean function

• Later you might learn other equivalencies:

finite automata ≡ regular expressions

computable functions ≡ programs

� � � � 3

Universality

• Every Boolean function can be written as a Boolean formula using AND,

OR and NOT operators.

• Every Boolean function can be implemented as a combinational circuit

using AND, OR and NOT gates.

• Since AND, OR and NOT gates can be constructed from NAND gates,

NAND gates are universal.

� � � � 4

Appendix A: Digital LogicA-17

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

All-NAND Implementation of OR
• NAND alone implements all other Boolean logic gates.

A

B
 A + B

A

B

 A + B

Appendix A: Digital LogicA-16

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

DeMorgan’s Theorem

0
0
1
1

0
1
0
1

A B

1
1
1
0

1
1
1
0

1
0
0
0

1
0
0
0

= =A B A + B A + B A B

A

B
F = A + B

A + B = A + B = A BDeMorgan’s theorem:

A

B
F = A B

DigSim

• Java applet/application that simulates digital logic

• Not for industrial use, good enough for us

• Advantages: FREE, runs on most platforms

• Disadvantages: slow, timing issues, saving issues

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Section 0101
Spring 2002

DigSim Assignment 3: J-K Flip-Flops

Due: Tuesday May 14, 2002

Objective

The objective of this assignment is to implement a finite state machine using J-K flip-flops.

Assignment

Consider the following transition diagram (from Contemporary Logic Design, Randy H. Katz,
Benjamin-Cummings Publishing, 1994) for a finite state machine with 1 input bit and 1 output bit:

S1 S2

S4S3

S5

S0

0/ 0

0/ 0

0/ 0

0/ 1

0/ 1

0/ 1

1/ 0 1/ 0

1/ 0

1/ 0

1/ 1

1/ 1

Your assignment is to implement this finite state machine using J-K flip flops. Assume that the
state assignments are 000 for S0, 001 for S1, 010 S2, 011 for S3, 100 for S4, and 101 for S5.

1. In the truth table on the next page, let A, B and C be the current states and A’, B’ and C’ be
the next states stored in the J-K flip flops. (E.g., S4 is assigned A=1, B=0 and C=0.) We also
use D for the 1 bit input. Fill in the rest of the truth table using the excitation table for J-K
flip flops. For example, in row 9, flip-flop A is currently storing 1 and must store 0 in the
next state. To achieve this, we look at the 10 entry of the excitation table and note that the J
input to flip-flop A (call it JA) can be set to anything, but the K input, KA, must be set to 1.

2. Use the Karnaugh maps provided to simplify the Boolean formulas for the J and K inputs to
each J-K flip flop and for the output value z.

3. Implement the resulting circuit in DigSim.

Next time

• Transistors & Gates

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

