
CMSC 313 Lecture 14

• Announcement:
Project 4 due date extended to Thu 10/16

• Reminder:
 Midterm Exam next Thursday 10/16

• Project 4 Questions

• Cache Memory

• Interrupts
• Review for midterm exam

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Fall 2003

Project 4: C Functions

Due: Tue 10/14/03, Section 0101 (Chang) & Section 0301 (Macneil)

Wed 10/15/03, Section 0201 (Patel & Bourner)

Objective

The objective of this programming exercise is to practice writing assembly language programs that use
the C function call conventions.

Assignment

Convert your assembly language program from Project 3 as follows:

1. Convert the program into one that follows the C function call convention, so it may be called from
a C program. Your program should work with the following function prototype:
The intention here is that the first parameter is a pointer to the records array and the second
parameter has the number of items in that array.

void report (void *, unsigned int) ;

The intention here is that the first parameter is a pointer to the records array and the second
parameter has the number of items in that array.

2. Modify your program so it uses the strncmp() function from the C library to compare the nicknames
of two records. The function prototype of strncmp() is:

int strncmp(const char *s1, const char *s2, size_t n) ;

The function returns an integer less than, equal to, or greater than zero if s1 (or the first n bytes
thereof) is found, respectively, to be less than, to match, or be greater than s2.

3. Modify your program so that it prints out the entire record (not just the realname field) of the
record with the least number of points and the record with the alphabetically first nickname. You
must use the printf() function from the C library to produce this output. The output of your
program would look something like:

Lowest Points: James Pressman (jamieboy)
 Alignment: Lawful Neutral
 Role: Fighter
 Points: 57
 Level: 1
First Nickname: Dan Gannett (danmeister)
 Alignment: True Neutral
 Role: Ranger
 Points: 7502
 Level: 3

A sample C program that should work with your assembly language implementation of the report()
function is available on the GL file system: /afs/umbc.edu/users/c/h/chang/pub/cs313/records2.c

Implementation Notes

• Documentation for the printf() and strncmp() functions are available on the Unix system by typing
man -S 3 printf and man -S 3 strncmp.

• Note that the strncmp() function takes 3 parameters, not 2. It is good programming practice to use
strncmp() instead of strcmp() since this prevents runaway loops if the strings are not properly
null terminated. The third argument should be 16, the length of the nickname field.

• As in Project 3, you must also make your own test cases. The example in records2.c does not fully
exercise your program. As before, your program will be graded based upon other test cases. If you
have good examples in Project 3, you can just reuse those.

• Use gcc to link and load your assembly language program with the C program. This way, gcc will
call ld with the appropriate options:

nasm -f elf report2.asm
gcc records2.c report2.o

• Notes on the C function call conventions are available on the web:

http://www.csee.umbc.edu/~chang/cs313.f03/stack.shtml

• Your program should be reasonably robust and report errors encountered (e.g., empty array) rather
than crashing.

Turning in your program

Use the UNIX submit command on the GL system to turn in your project. You should submit at least 4
files: your assembly language program, at least 2 of your own test cases and a typescript file of sample runs
of your program. The class name for submit is cs313_0101, cs313_0102 or cs313_0103 for respectively
sections 0101 (Chang), 0201 (Patel & Bourner) or 0301 (Macneil). The name of the assignment name is
proj4. The UNIX command to do this should look something like:

submit cs313_0103 proj4 report2.asm myrec1.c myrec2.c typescript

Last Time: Virtual Memory

• Not enough physical memory
Uses disk space to simulate extra memory

Pages not being used can be swapped out
(how and when you’ll learn in CMSC 421 Operating Systems)

Thrashing: pages constantly written to and retrieved from disk
(time to buy more RAM)

• Fragmentation
Contiguous blocks of virtual memory do not have to map to
contiguous sections of real memory

• Memory protection
Each process has its own page table

Shared pages are read-only

User processes cannot alter the page table (must be supervisor)

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Chapter 7: Memory7-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The Memory Hierarchy

Registers

Cache

Main memory

Secondary storage (disks)

Off-line storage (tape)

Fast and expensive

Slow and inexpensive

Increasing
performance and
increasing cost

Chapter 7: Memory7-14

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Placement of Cache in a Computer
System

CPU
400 MHz

Main
Memory
10 MHz

Bus 66 MHz

Main
Memory
10 MHz

Bus 66 MHz

CPU

Cache

400 MHz

Without cache With cache

• The locality principle : a recently referenced memory location is
likely to be referenced again (temporal locality); a neighbor of a
recently referenced memory location is likely to be referenced
(spatial locality).

Chapter 7: Memory7-15

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

An Associative Mapping Scheme for a
Cache Memory

Slot 0

Slot 1

Slot 2

Slot 214–1

.

.

.

.

.

.

Block 0

Block 1

Block 128

Block 129

Block 227–1

Cache Memory

Main Memory

TagValid Dirty

32 words
per block

27

.

.

.

Chapter 7: Memory7-16

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Associative Mapping Example
• Consider how an access to memory location (A035F014) 16 is

mapped to the cache for a 2 32 word memory. The memory is di-
vided into 2 27 blocks of 2 5 = 32 words per block, and the cache
consists of 2 14 slots:

27 bits 5 bits

Tag Word

Tag Word

1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0

• If the addressed word is in the cache, it will be found in word (14) 16
of a slot that has tag (501AF80) 16, which is made up of the 27 most
significant bits of the address. If the addressed word is not in the
cache, then the block corresponding to tag field (501AF80) 16 is
brought into an available slot in the cache from the main memory,
and the memory reference is then satisfied from the cache.

Chapter 7: Memory7-17

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Replacement Policies
• When there are no available slots in which to place a block, a re-

placement policy is implemented. The replacement policy gov-
erns the choice of which slot is freed up for the new block.

• Replacement policies are used for associative and set-associative
mapping schemes, and also for virtual memory.

• Least recently used (LRU)

• First-in/first-out (FIFO)

• Least frequently used (LFU)

• Random

• Optimal (used for analysis only – look backward in time and re-
verse-engineer the best possible strategy for a particular se-
quence of memory references.)

Chapter 7: Memory7-18

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A Direct Mapping Scheme for Cache
Memory

Slot 0

Slot 1

Slot 2

Slot 214–1

.

.
.

.

.

.

.

.

.

Block 0

Block 1

Block 2

Block 2

Block 227

+1

Cache Memory

Main Memory

TagValid Dirty

32 words
per block

13

14

14

Chapter 7: Memory7-19

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Direct Mapping Example
• For a direct mapped cache, each main memory block can be

mapped to only one slot, but each slot can receive more than one
block. Consider how an access to memory location (A035F014) 16
is mapped to the cache for a 2 32 word memory. The memory is di-
vided into 2 27 blocks of 2 5 = 32 words per block, and the cache
consists of 2 14 slots:

• If the addressed word is in the cache, it will be found in word (14) 16
of slot (2F80) 16, which will have a tag of (1406) 16.

13 bits 5 bits14 bits

Tag WordSlot

Tag Word

1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0

Slot

Chapter 7: Memory7-20

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

A Set Associative Mapping Scheme
for a Cache Memory

Slot 0

Slot 1

Slot 2

Slot 214–1

.

.

.

.

.

.

.

.

.

Block 0

Block 1

Block 213

Block 213+1

Block 227–1

Cache

Main Memory

TagValid Dirty

32 words
per block

Set 0

Set 1

Set 213–1

14

Chapter 7: Memory7-21

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Set-Associative Mapping Example
• Consider how an access to memory location (A035F014) 16 is

mapped to the cache for a 2 32 word memory. The memory is di-
vided into 2 27 blocks of 2 5 = 32 words per block, there are two
blocks per set, and the cache consists of 2 14 slots:

• The leftmost 14 bits form the tag field, followed by 13 bits for the
set field, followed by five bits for the word field:

Tag WordSet

14 bits 5 bits13 bits

Tag Word

1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0

Set

Chapter 7: Memory7-22

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Cache Read and Write Policies

Cache

Read

 Cache

Write

Data is

in the

cache

Data is

not in the

cache

Data is

in the

cache

Data is

not in the

cache

Forward

to CPU.

Write Through:

Write data to both

cache and main

memory,

Write Back: Write
data to cache only.
Defer main memory
write until block is
flushed.

Load Through:
Forward the word
as cache line is
filled,

 -or-

Fill cache line and
then forward word.

Write Allocate: Bring
line into cache, then
update it,

 -or-

Write No-Allocat
Update main memory
only.

-or-

Chapter 7: Memory7-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The Memory Hierarchy

Registers

Cache

Main memory

Secondary storage (disks)

Off-line storage (tape)

Fast and expensive

Slow and inexpensive

Increasing
performance and
increasing cost

INTERRUPTS

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 3

Motivating Example
; An Assembly language program for printing data

MOV EDX, 378H ;Printer Data Port
MOV ECX, 0 ;Use ECX as the loop counter

XYZ: MOV AL, [ABC + ECX] ;ABC is the beginning of the memory area
; that characters are being printed from

OUT [DX], AL ;Send a character to the printer
INC ECX
CMP ECX, 100000 ; print this many characters
JL XYZ

Issues:
! What about difference in speed between the processor and printer?

! What about the buffer size of the printer?
" Small buffer can lead to some lost data that will not get printed

Communication with input/output devices needs handshaking protocolsCommunication with input/output devices needs handshaking protocols

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 4

Communicating with I/O Devices
! The OS needs to know when:

➨ The I/O device has completed an operation
➨ The I/O operation has encountered an error

! This can be accomplished in two different ways:
➨ Polling:

" The I/O device put information in a status register
" The OS periodically check the status register

➨ I/O Interrupt:
" An I/O interrupt is an externally stimulated event, asynchronous to

instruction execution but does NOT prevent instruction completion
" Whenever an I/O device needs attention from the processor, it

interrupts the processor from what it is currently doing
" Some processors deals with interrupts as special exceptions

* Slide is partially a courtesy of Dave Patterson

These schemes requires heavy processor’s involvement and
suitable only for low bandwidth devices such as the keyboard
These schemes requires heavy processor’s involvement and
suitable only for low bandwidth devices such as the keyboard

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 5

Polling: Programmed I/O

! Advantage:
" Simple: the processor is totally in control and does all the work

! Disadvantage:
" Polling overhead can consume a lot of CPU time

CPU

IOC

device

Memory

Is the
data

ready?

read
data

store
data

yes no

done? no
yes

busy wait loop
not an efficient

way to use the CPU
unless the device

is very fast!

but checks for I/O
completion can be
dispersed among

computation
intensive code

* Slide is courtesy of Dave Patterson

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 6

Polling in 80386
MOV EDX, 379H ;Printer status port
MOV ECX, 0

XYZ: IN AL, [DX] ;Ask the printer if it is ready
CMP AL, 1 ;1 means it's ready
JNE XYZ ;If not try again
MOV AL, [ABC + ECX]
DEC EDX ;Data port is 378H
OUT [DX], AL ;Send one byte
INC ECX
INC EDX ;Put back the status port
CMP ECX, 100000
JL XYZ

Issues:
! Status registers (ports) allows handshaking between CPU and I/O devices

! Device status ports are accessible through the use of typical I/O instructions

! CPU is running at the speed of the printer (what a waste!!)

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 7

" The fetch-execute cycle is a program-driven model of computation
" Computers are not totally program driven as they are also hardware driven
" An I/O interrupt is an externally stimulated event, asynchronous to instruction

execution but does NOT prevent instruction completion
" Whenever an I/O device needs attention from the processor, it interrupts the

processor from what it is currently doing
" Processors typically have one or multiple interrupt pins for device interface

External Interrupt

CPU Memory I/O
(Printer)

Address Bus

Data Bus

Interrupt Line

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 8

Interrupt Driven Data Transfer

! Advantage:
" User program progress is only halted during actual transfer

! Disadvantage: special hardware is needed to:
" Cause an interrupt (I/O device)
" Detect an interrupt (processor)
" Save the proper states to resume after the interrupt (processor)

add
sub
and
or
nop

read
store
...
rti
memory

user
program(1) I/O

interrupt

(2) save PC

(3) interrupt
service addr

interrupt
service
routine(4)

CPU

IOC

device

Memory

:

* Slide is courtesy of Dave Patterson

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 9

"The 80386 has only one interrupt pin and relies on an interrupt controller to
interface and prioritize the different I/O devices

" Interrupt handling follows the following steps:
➊ Complete current instruction
➋ Save current program counter and flags into the stack
➌ Get interrupt number responsible for the signal from interrupt controller
➍ Find the address of the appropriate interrupt service routine
➎ Transfer control to interrupt service routine

" A special interrupt acknowledge bus cycle is used to read interrupt number
" Interrupt controller has ports that are accessible through IN and OUT

80386 Interrupt Handling

CPU Memory I/O

Address Bus

Data Bus

Interrupt Line

Interrupt
Controller

IRQ Bus

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 10

Gate #255

. . .

Gate #1

Gate #4

Gate #3

Gate #2

Gate #0

Gate #5

b + 2040

b + 8

b + 32

b + 24

b + 16

b

b + 40

Address

Interrupt Descriptor Table

ISR Address
Upper 2 Bytes Type ISR Address

Lower 2 Bytes

63 48 47 16 15 04443 4039

" The address of an ISR is fetched from an
interrupt descriptor table

" IDT register is loaded by operating system
and points to the interrupt descriptor table

" Each entry is 8 bytes indicating address of
ISR and type of interrupt (trap, fault etc.)

" RESET and non-maskable (NMI)
interrupts use distinct processor pins

" NMI is used to for parity error or power
supply problems and thus cannot be
disables

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 11

! Since the 80386 has one interrupt pin, an interrupt controller is
needed to handle multiple input and output devices

! The Intel 8259 is a programmable interrupt controller that can be
used either singly or in a two-tier configuration

The 8259 Interrupt Controller

Slave
8259
#1

Master
8259

Slave
8259
#2

Slave
8259
#8

...

! When used as a master, the 8259
can interface with up to 8 slaves

! Since the 8259 controller can be a
master or a slave, the interrupt
request lines must be programmable

! Programming the 8259 chips takes
place at boot time using the OUT
commands

! The order of the interrupt lines reflects
the priority assigned to them

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 12

The ISA Architecture

Master
8259

IRQ 0
IRQ 1

IRQ 3
IRQ 4
IRQ 5
IRQ 6
IRQ 7

Slave
8259

IRQ 8
IRQ 9

IRQ 11
IRQ 12
IRQ 13
IRQ 14
IRQ 15

IRQ 10

! The ISA architecture is set by IBM competitors and standardizes:
" The interrupt controller circuitry
" Many IRQ assignments
" Many I/O port assignments
" The signals and connections made available to expansion cards

! A one-master-one-slave configuration is the norm for ISA architecture

! Priority is assigned in the following order:
IRQ 0, IRQ 1, IRQ 8, …, IRQ 15, IRQ 3, …, IRQ 7

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 13

IRQ ALLOCATION INTRRUPT NUM BER
IRQ 0 System Tim er 08H
IRQ 1 Keyboard 09H
IRQ 3 Seria l Port #2 OBH
IRQ 4 Seria l Port # 1 O CH
IRQ 5 Paralle l Port #2 O DH
IRQ 6 Floppy Controller OEH
IRQ 7 Paralle l Port # 1 O FH
IRQ 8 Real tim e clock 70H
IRQ 9 available 71 H
IRQ 10 available 72H
IRQ 11 available 73H
IRQ 12 M ouse 74H
IRQ 13 87 ERRO R line 75H
IRQ 14 Hard drive contro ller 76H
IRQ 15 available 77H

ISA Interrupt Routings

linux1$ cat /proc/interrupts

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 14

I/O Interrupt vs. Exception
! An I/O interrupt is just like the exceptions except:

" An I/O interrupt is asynchronous
" Further information needs to be conveyed
" Typically exceptions are more urgent than interrupts

! An I/O interrupt is asynchronous with respect to instruction execution:
" I/O interrupt is not associated with any instruction
" I/O interrupt does not prevent any instruction from completion

• You can pick your own convenient point to take an interrupt

! I/O interrupt is more complicated than exception:
" Needs to convey the identity of the device generating the interrupt
" Interrupt requests can have different urgencies:

• Interrupt request needs to be prioritized
• Priority indicates urgency of dealing with the interrupt
• High speed devices usually receive highest priority

* Slide is courtesy of Dave Patterson

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 15

Internal and Software Interrupt
! Exceptions:

" Exceptions do not use the interrupt acknowledge bus cycle but are still
handled by a numbered ISR

" Examples: divide by zero, unknown instruction code, access violation, …

! Software Interrupts:
" The INT instruction makes interrupt service routines accessible to

programmers
" Syntax: “INT imm” with imm

indicating interrupt number
" Returning from an ISR is like

RET, except it enables interrupts

! Fault and Traps:
" When an instruction causes an exception and is retried after handling it,

the exception is called faults (e.g. page fault)
" When control is passed to the next instruction after handling an exception

or interrupt, such exception is called a trap (e.g. division overflow)

 Ordinary
subroutine

Interrupt
service routine

Invoke CALL INT
Terminate RET IRET

Built-in Hardware Exceptions

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Allocation Int #
Division Overflow 00H
Single Step 01H
NMI 02H
Breakpoint 03H
Interrupt on Overflow 04H
BOUND out of range 05H
Invalid Machine Code 06H
87 not available 07H
Double Fault 08H
87 Segment Overrun 09H
Invalid Task State Segment 0AH
Segment Not Present 0BH
Stack Overflow 0CH
General Protection Error 0DH
Page Fault 0EH
(reserved) 0FH
87 Error 10H

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 16

C Library
Functions

System
Commands

System
Calls

Operating
System

Hardware
Interrupts

System Calls

;This program makes a system call
;

global main
main: MOV EAX, 4 ;Write is system call #4

MOV EBX, 1 ;1 is number for standard output
MOV ECX, ABC ;ABC is the string pointer
MOV EDX, 13 ;Write 13 bytes
INT 80H ;System call interrupt
RET

ABC: db "Hello world!", 0AH,0

main() {
char s[] = "Hello world!\n";
write(1,s,13);

}

! Linux conventions: parameters are stored left to right order in registers
EBX, ECX, EDX, EDI and ESI respectively

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 17

Privileged Mode
Privilege Levels
! The difference between kernel mode and user mode is in the privilege level

! The 80386 has 4 privilege levels, two of them are used in Linux
" Level 0: system level (Linux kernel)
" Level 3: user level (user processes)

! The CPL register stores the current privilege level and is reset during the
execution of system calls

! Privileged instructions, such as LIDT that set interrupt tables can execute
only when CPL = 0

Stack Issues
! System calls have to use different stack since the user processes will have

write access to them (imagine a process passing the stack pointer as a
parameter forcing the system call to overwrite its own stack

! There is a different stack pointer for every privilege level stored in the task
state segment

Summary: Types of Interrupts

• Hardware vs Software
Hardware: I/O, clock tick, power failure, exceptions

Software: INT instruction

• External vs Internal Hardware Interrupts
External interrupts are generated by CPU’s interrupt pin

Internal interrupts (exceptions): div by zero, single step, page fault,
bad opcode, stack overflow, protection, ...

• Synchronous vs Asynchronous Hardware Int.
Synchronous interrupts occur at exactly the same place every time
the program is executed. E.g., bad opcode, div by zero, illegal
memory address.

Asynchronous interrupts occur at unpredictable times relative to the
program. E.g., I/O, clock ticks.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Summary: Interrupt Sequence
Device sends signal to interrupt controller.

Controller uses IRQ# for interrupt # and priority.

Controller sends signal to CPU if the CPU is not already processing
an interrupt with higher priority.

CPU finishes executing the current instruction

CPU saves EFLAGS & return address on the stack.

CPU gets interrupt # from controller using I/O ops.

CPU finds “gate” in Interrupt Description Table.

CPU switches to Interrupt Service Routine (ISR). This may include a
change in privilege level. IF cleared.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Interrupt Sequence (cont.)
ISR saves registers if necessary.

ISR, after initial processing, sets IF to allow interrupts.

ISR processes the interrupt.

ISR restores registers if necessary.

ISR sends End of Interrupt (EOI) to controller.

ISR returns from interrupt using IRET. EFLAGS (inlcuding IF) & return
address restored.

CPU executes the next instruction.

Interrupt controller waits for next interrupt and manages pending
interrupts.

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Next

• Thu 10/16: Midterm Exam

• Tue 10/21: Introduction to Digital Logic

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

