
CMSC 313 Lecture 13

• Project 4 Questions

• Reminder: Midterm Exam next Thursday 10/16
• Virtual Memory

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Fall 2003

Project 4: C Functions

Due: Tue 10/14/03, Section 0101 (Chang) & Section 0301 (Macneil)

Wed 10/15/03, Section 0201 (Patel & Bourner)

Objective

The objective of this programming exercise is to practice writing assembly language programs that use
the C function call conventions.

Assignment

Convert your assembly language program from Project 3 as follows:

1. Convert the program into one that follows the C function call convention, so it may be called from
a C program. Your program should work with the following function prototype:
The intention here is that the first parameter is a pointer to the records array and the second
parameter has the number of items in that array.

void report (void *, unsigned int) ;

The intention here is that the first parameter is a pointer to the records array and the second
parameter has the number of items in that array.

2. Modify your program so it uses the strncmp() function from the C library to compare the nicknames
of two records. The function prototype of strncmp() is:

int strncmp(const char *s1, const char *s2, size_t n) ;

The function returns an integer less than, equal to, or greater than zero if s1 (or the first n bytes
thereof) is found, respectively, to be less than, to match, or be greater than s2.

3. Modify your program so that it prints out the entire record (not just the realname field) of the
record with the least number of points and the record with the alphabetically first nickname. You
must use the printf() function from the C library to produce this output. The output of your
program would look something like:

Lowest Points: James Pressman (jamieboy)
 Alignment: Lawful Neutral
 Role: Fighter
 Points: 57
 Level: 1
First Nickname: Dan Gannett (danmeister)
 Alignment: True Neutral
 Role: Ranger
 Points: 7502
 Level: 3

A sample C program that should work with your assembly language implementation of the report()
function is available on the GL file system: /afs/umbc.edu/users/c/h/chang/pub/cs313/records2.c

Implementation Notes

• Documentation for the printf() and strncmp() functions are available on the Unix system by typing
man -S 3 printf and man -S 3 strncmp.

• Note that the strncmp() function takes 3 parameters, not 2. It is good programming practice to use
strncmp() instead of strcmp() since this prevents runaway loops if the strings are not properly
null terminated. The third argument should be 16, the length of the nickname field.

• As in Project 3, you must also make your own test cases. The example in records2.c does not fully
exercise your program. As before, your program will be graded based upon other test cases. If you
have good examples in Project 3, you can just reuse those.

• Use gcc to link and load your assembly language program with the C program. This way, gcc will
call ld with the appropriate options:

nasm -f elf report2.asm
gcc records2.c report2.o

• Notes on the C function call conventions are available on the web:

http://www.csee.umbc.edu/~chang/cs313.f03/stack.shtml

• Your program should be reasonably robust and report errors encountered (e.g., empty array) rather
than crashing.

Turning in your program

Use the UNIX submit command on the GL system to turn in your project. You should submit at least 4
files: your assembly language program, at least 2 of your own test cases and a typescript file of sample runs
of your program. The class name for submit is cs313_0101, cs313_0102 or cs313_0103 for respectively
sections 0101 (Chang), 0201 (Patel & Bourner) or 0301 (Macneil). The name of the assignment name is
proj4. The UNIX command to do this should look something like:

submit cs313_0103 proj4 report2.asm myrec1.c myrec2.c typescript

Last Time

• Linux/gcc/i386 Function Call Convention

• Now we know where our C programs store their
data, right???

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

int global ;

int main() {

 int *ptr, n ;

 printf ("Address of main: %08x\n", &main) ;
 printf ("Address of global variable: %08x\n", &global) ;
 printf ("Address of local variable: %08x\n", &n) ;

 ptr = (int *) malloc(4) ;
 printf ("Address of allocated memory: %08x\n", ptr) ;
}

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 7

Linux
Kernel

3 Gig

4 Gig

Paging
System

Task
#2

0

3 Gig

Task
#3

0

3 Gig

Task
#n

0

3 Gig

RAM

Disk...

Linux Virtual Memory Space
" Linux reserves 1 Gig

memory in the virtual
address space

" The size of the Linux
kernel significantly affects
its performance
(swapping is expensive)

" Linux kernel can be
customized by including
only relevant modules

"Designating kernel space
facilitates protection of

"The portion of disk used
for paging is called the
swap space

Chapter 7: Memory7-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

The Memory Hierarchy

Registers

Cache

Main memory

Secondary storage (disks)

Off-line storage (tape)

Fast and expensive

Slow and inexpensive

Increasing
performance and
increasing cost

Chapter 7: Memory7-28

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Overlays
• A partition graph for a program with a main routine and three sub-

routines:

Main Routine

Subroutine A

Subroutine B

Subroutine C

Compiled program

Main A

BC

Partition graph

Partition #0

Partition #1

Physical Memory

Smaller
than

program

Richard Chang
This is what you do when you don't have enough memory to run a large program on ancient operating systems.

Chapter 7: Memory7-34

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Fragmentation

• (a) Free area
of memory
after initial-
ization; (b)
after frag-
mentation;
(c) after coa-
lescing.

(a) (b) (c)

Operating
System

Free Area

I/O Space

Dead Zone

Operating
System

I/O Space

Dead Zone

Free Area

Free Area

Free Area

Free Area

Program A

Program B

Program C

Operating
System

I/O Space

Dead Zone

Free Area

Free Area

Free Area

Program A

Program B

Program C

Memory Protection

• Prevents one process from reading from or writing
to memory used by another process

• Privacy in a multiple user environments
• Operating system stability

Prevents user processes (applications) from altering memory used by
the operating system

One application crashing does not cause the entire OS to crash

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Chapter 7: Memory7-29

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Virtual Memory
• Virtual memory is stored in a hard disk image. The physical

memory holds a small number of virtual pages in physical page
frames .

• A mapping between a virtual and a physical memory:

Virtual memory

Physical memory

Page frame 0

Page frame 1

Page frame 2

Page frame 3

Page 0

Page 1

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Virtual
addresses

Physical
addresses

0 - 1023

1024 - 2047

2048 - 3071

3072 - 4095

4096 - 5119

5120 - 6143

6144 - 7167

7168 - 8191

0 - 1023

1024 - 2047

2048 - 3071

3072 - 4095

Chapter 7: Memory7-30

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Page Table
• The page table maps between virtual memory and physical

memory.

Present bit:
0: Page is not in
	 physical memory
1: Page is in physical
	 memory

Present bit

Page #

0

1

2

3

4

5

6

7

1

0

1

0

1

0

0

1

00

xx

01

xx

11

xx

xx

10

Disk address

Page frame

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

Chapter 7: Memory7-31

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Using the Page Table
• A virtual address is translated into a physical address:

0

1

2

3

4

5

6

7

1

0

1

0

1

0

0

1

00

xx

01

xx

11

xx

xx

10

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

1 0 0 1 1 0 1 0 0 0 1 0 1 Virtual address

Page table

1 1 1 1 0 1 0 0 0 1 0 1

Physical address

Page Offset

Chapter 7: Memory7-32

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Using
the Page

Table
(cont’)

• The configura-
tion of a page
table changes
as a program
executes.

• Initially, the
page table is
empty. In the
final configura-
tion, four pages
are in physical
memory.

0

1

2

3

4

5

6

7

0

1

0

0

0

0

0

0

xx

00

xx

xx

xx

xx

xx

xx

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

After
fault on
page #1

0

1

2

3

4

5

6

7

0

1

1

1

0

0

0

0

xx

00

01

10

xx

xx

xx

xx

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

0

1

2

3

4

5

6

7

0

1

1

0

0

0

0

0

xx

00

01

xx

xx

xx

xx

xx

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

0

1

2

3

4

5

6

7

0

0

1

1

1

1

0

0

xx

xx

01

10

11

00

xx

xx

01001011100

11101110010

10110010111

00001001111

01011100101

10100111001

00110101100

01010001011

Final

After
fault on
page #2

After
fault on
page #3

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 9

3 2 1 011 10 9 815 14 13 1231 30 29 28 27

Page offsetVirtual page number

Virtual address

3 2 1 011 10 9 815 14 13 1229 28 27

Page offsetPhysical page number

Physical address

Translation

Virtual Addressing

❑ Page faults are costly and take millions of cycles to process (disks are slow)
❑ 80386 Page attributes:

➨ RW: read and write permission
➨ US: User mode or kernel mode only access
➨ PP: present bit to indicate where the page is

Address of Page

31 12 11 0

P
P

W
R

U
S

12

Richard Chang
12 bit offset => 4k pages20 bits virtual page # => 2^20 = 1 M of pages4 bytes per entry in the page table => 4 MB to store the complete page table.That's 4MB per process (!!!), since each process has its own page table.

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 10

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

Page Table

Page table:
★ Resides in main memory
★ One entry per virtual page
★ No tag is requires since it

covers all virtual pages
★ Point directly to physical page
★ Table can be very large
★ Operating sys. may maintain

one page table per process
★ A dirty bit is used to track

modified pages for copy back

Hardware supported

Indicates whether the
virtual page is in
main memory or not

Richard Chang

Richard Chang
12 bit page offset => 4 kbyte page size20 bit virtual page number => 2^20 = 1 MB of pages4 bytes per entry in the table => 4 MB to store the page tableThat's 4MB per process (!!!), since each process has its own page table.This is silly since most processes won't use 4GigB of memory, so do not need 1M page table entries.

Mohamed Younis CMCS 313, Computer Organization and Assembly Language 11

Page Table
Table

1024 Page Tables. . .
. . .

1024
pages

. . .

1024
pages

. . .

1024
pages

Linux 2-Level Page Table

Index into
Page Table Table

Index into
Page Table Index into Page

31 22 21 12 11 0

CR3 register

"The CR3 register is designated for pointing to the first level page table
"The CR3 is part of the task state that needs to be saved at preemption

Richard Chang
The Page Table Table uses 4kbytes of memory. It has 1024 entries, each taking 4 bytes.The page tables also take 4kbytes.This is convenient, why??Ans: unused page tables can be swapped out to disk.

3-20

PROTECTED-MODE MEMORY MANAGEMENT

3.7.1. Linear Address Translation (4-KByte Pages)

Figure 3-12 shows the page directory and page-table hierarchy when mapping linear addresses
to 4-KByte pages. The entries in the page directory point to page tables, and the entries in a page
table point to pages in physical memory. This paging method can be used to address up to 220

pages, which spans a linear address space of 232 bytes (4 GBytes).

To select the various table entries, the linear address is divided into three sections:

• Page-directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a page table.

Table 3-3. Page Sizes and Physical Address Sizes

PG Flag,
CR0

PAE Flag,
CR4

PSE Flag,
CR4

PS Flag,
PDE

PSE-36 CPUID
Feature Flag Page Size

Physical
Address Size

0 X X X X — Paging Disabled

1 0 0 X X 4 KBytes 32 Bits

1 0 1 0 X 4 KBytes 32 Bits

1 0 1 1 0 4 MBytes 32 Bits

1 0 1 1 1 4 MBytes 36 Bits

1 1 X 0 X 4 KBytes 36 Bits

1 1 X 1 X 2 MBytes 36 Bits

Figure 3-12. Linear Address Translation (4-KByte Pages)

0

Directory Table Offset

Page Directory

Directory Entry

CR3 (PDBR)

Page Table

Page-Table Entry

4-KByte Page

Physical Address

31 21 111222
Linear Address

1024 PDE * 1024 PTE = 220 Pages32*

10

12

10

*32 bits aligned onto a 4-KByte boundary.

20

3-23

PROTECTED-MODE MEMORY MANAGEMENT

page-directory entries when 4-MByte pages and 32-bit physical addresses are being used. The
functions of the flags and fields in the entries in Figures 3-14 and 3-15 are as follows:

Page base address, bits 12 through 32
(Page-table entries for 4-KByte pages.) Specifies the physical address of the
first byte of a 4-KByte page. The bits in this field are interpreted as the 20 most-
significant bits of the physical address, which forces pages to be aligned on
4-KByte boundaries.

(Page-directory entries for 4-KByte page tables.) Specifies the physical
address of the first byte of a page table. The bits in this field are interpreted as
the 20 most-significant bits of the physical address, which forces page tables to
be aligned on 4-KByte boundaries.

Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages
and 32-Bit Physical Addresses

31

Available for system programmer’s use
Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)

12 11 9 8 7 6 5 4 3 2 1 0

P
S

P
CA0

Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

D
P

P
W
T

U
/
S

R
/

W
GAvailPage-Table Base Address

31

Available for system programmer’s use
Global Page
Page Table Attribute Index
Dirty

12 11 9 8 7 6 5 4 3 2 1 0

P
CAD

Accessed
Cache Disabled
Write-Through
User/Supervisor
Read/Write
Present

D
P

P
W
T

U
/
S

R
/

W
AvailPage Base Address

Page-Directory Entry (4-KByte Page Table)

Page-Table Entry (4-KByte Page)

P
A
T

G

Richard Chang
Use User/Supervisor

Richard Chang
Read/ Writ ite

Richard Chang
Present

Richard Chang
Us User/ er/Superv upervisor

Richard Chang
Read/Wr /Write

Richard Chang
Present

Chapter 7: Memory7-33

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Segmentation
• A segmented memory allows two users to share the same word

processor code, with different data spaces:

Address space for
code segment of
word processor

Data space
for user #0

Data space
for user #1

Used

Used

Used

Free

Free

Unused

Segment #0
Execute only

Segment #1
Read/write by

user #0

Segment #2
Read/write by

user #1

Chapter 7: Memory7-35

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Translation Lookaside Buffer
• An example TLB holds 8 entries for a system with 32 virtual

pages and 16 page frames.

Valid
Virtual page

number
Physical

page number

1

1

0

0

1

0

1

0

0 1 0 0 1 1 1 0 0

1 0 1 1 1 1 0 0 1

- - - - - - - - -

- - - - - - - - -

0 1 1 1 0 0 0 0 0

- - - - - - - - -

0 0 1 1 0 0 1 1 1

- - - - - - - - -

Virtual Memory: Problems Solved

• Not enough physical memory
Uses disk space to simulate extra memory

Pages not being used can be swapped out
(how and when you’ll learn in CMSC 421 Operating Systems)

Thrashing: pages constantly written to and retrieved from disk
(time to buy more RAM)

• Fragmentation
Contiguous blocks of virtual memory do not have to map to
contiguous sections of real memory

• Memory protection
Each process has its own page table

Shared pages are read-only

User processes cannot alter the page table (must be supervisor)

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Virtual Memory: too slow?

• Address translation is done in hardware
In the middle of the fetch execute cycle for:

MOV EAX, [buffer]

the physical address of buffer is computed in hardware.

• Recently computed page locations are cached in
the translation lookaside buffer (TLB)

• Page faults are very expensive (millions of cycles)

• Operating systems for personal computers have
only recently added memory protection

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Next Time

• Memory Cache

• Interrupts

• Review for Midterm Exam

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

