
CMSC 313 Lecture 08

• Announcements
Project 2 due date moved to Thursday 9/25

Project 3 to be assigned Thursday 9/25, still due Tuesday 10/7

• Project 2 Questions

• More Arithmetic Instructions
NEG, MUL, IMUL, DIV

• Indexed Addressing: [ESI + ECX*4 + DISP]
• Some i386 string instructions

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

CMSC 313, Computer Organization & Assembly Language Programming Fall 2003

Project 2: Hamming Distance

Due: Tue 09/23/03, Section 0101 (Chang) & Section 0301 (Macneil)

Wed 09/24/03, Section 0201 (Patel & Bourner)

Objective

The objective of this programming project is to practice designing your own loops and branching code in
assembly language and to gain greater familiarity with the i386 instructions set.

Assignment

Write an assembly language program that prompts the user for two input strings and computes the
Hamming distance between the two strings. The Hamming distance is the number of bit positions where the
two strings differ. For example, the ASCII representations of the strings "foo" and "bar" in binary are:

"foo" = 0110 0110 0110 1111 0110 1111

"bar" = 0110 0010 0110 0001 0111 0010

So, the Hamming distance between "foo" and "bar" is 8.

Some details:

• Your program must return the Hamming distance of the two strings as the exit status of the program.
This is the value stored in the EBX register just before the system call to exit the program.

• To see the exit status of your program, execute the program using the Unix command:

a.out ; echo $?

• Since the exit status is a value between 0 and 255, you should restrict the user input to 31 characters.

• If the user enters two strings with different lengths, your program should return the Hamming
distance up to the length of the shorter string.

• Look up the i386 instructions ADC and XOR and determine how these instructions are relevant to
this programming project.

• Record some sample runs of your program using the Unix script command.

Implementation Notes

• The easiest way to examine the contents of a register bit-by-bit is to use successive SHR instruction
to shift the least significant bit into the carry flag.

• When you use the gdb debugger to run your program, note that gdb reports the exit status as an octal
(base 8) value. The Unix shell reports the exit status in decimal.

• The Hamming distance between the following two strings is 38:
this is a test
of the emergency broadcast

You must also make your own test cases.

• Part of this project is for you to decide which registers should hold which values and whether to use
8-bit, 16-bit or 32-bit registers. A logical plan for the use of registers will make your program easier
to code and easier to debug — i.e., think about this before you start coding.

Turning in your program

Use the UNIX submit command on the GL system to turn in your project. You should submit two files:
1) the modified assembly language program and 2) the typescript file of sample runs of your program. The
class name for submit is cs313_0101, cs313_0201 or cs313_0301 depending on which section you attend.
The name of the assignment name is proj2. The UNIX command to do this should look something like:

submit cs313_0101 proj2 hamming.asm typescript

More Arithmetic Instructions

• NEG: two’s complement negation of operand

• MUL: unsigned multiplication
Multiply AL with r/m8 and store product in AX

Multiply AX with r/m16 and store product in DX:AX

Multiply EAX with r/m32 and store product in EDX:EAX

Immediate operands are not supported.

CF and OF cleared if upper half of product is zero.

• IMUL: signed multiplication
Use with signed operands

More addressing modes supported

• DIV: unsigned division

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-506

INSTRUCTION SET REFERENCE

NEG—Two's Complement Negation

Description

Replaces the value of operand (the destination operand) with its two's complement. (This oper-
ation is equivalent to subtracting the operand from 0.) The destination operand is located in a
general-purpose register or a memory location.

This instruction can be used with a LOCK prefix to allow the instruction to be executed atomi-
cally.

Operation

IF DEST ‹ 0
THEN CF ‹ 0
ELSE CF ‹ 1;

FI;
DEST ‹ – (DEST)

Flags Affected

The CF flag cleared to 0 if the source operand is 0; otherwise it is set to 1. The OF, SF, ZF, AF,
and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Opcode Instruction Description

F6 /3 NEG r/m8 Two's complement negate r/m8

F7 /3 NEG r/m16 Two's complement negate r/m16

F7 /3 NEG r/m32 Two's complement negate r/m32

Richard Chang
The CF flag clear cleared to 0 ed if the source o ce operan erand is d 0; oth otherwis rwise it is e set to t 1.

3-496

INSTRUCTION SET REFERENCE

MUL—Unsigned Multiply

Description

Performs an unsigned multiplication of the first operand (destination operand) and the second
operand (source operand) and stores the result in the destination operand. The destination
operand is an implied operand located in register AL, AX or EAX (depending on the size of the
operand); the source operand is located in a general-purpose register or a memory location. The
action of this instruction and the location of the result depends on the opcode and the operand
size as shown in the following table.

:

The result is stored in register AX, register pair DX:AX, or register pair EDX:EAX (depending
on the operand size), with the high-order bits of the product contained in register AH, DX, or
EDX, respectively. If the high-order bits of the product are 0, the CF and OF flags are cleared;
otherwise, the flags are set.

Operation

IF byte operation
THEN

AX ‹ AL * SRC
ELSE (* word or doubleword operation *)

IF OperandSize ‹ 16
THEN

DX:AX ‹ AX * SRC
ELSE (* OperandSize ‹ 32 *)

EDX:EAX ‹ EAX * SRC
FI;

FI;

Flags Affected

The OF and CF flags are cleared to 0 if the upper half of the result is 0; otherwise, they are set
to 1. The SF, ZF, AF, and PF flags are undefined.

Opcode Instruction Description

F6 /4 MUL r/m8 Unsigned multiply (AX ‹ AL * r/m8)

F7 /4 MUL r/m16 Unsigned multiply (DX:AX ‹ AX * r/m16)

F7 /4 MUL r/m32 Unsigned multiply (EDX:EAX ‹ EAX * r/m32)

Operand Size Source 1 Source 2 Destination

Byte AL r/m8 AX

Word AX r/m16 DX:AX

Doubleword EAX r/m32 EDX:EAX

Richard Chang
The OF and CF flag flags ar are cleared to e 0 if the u upper pper half o of the r result is 0; oth otherwis rwise, e, they are ey setto 1 1.

Richard Chang
Th The S e SF, ZF , ZF, AF , AF, a , and PF flags nd are und undefined efined.

3-321

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply

Description

Performs a signed multiplication of two operands. This instruction has three forms, depending
on the number of operands.

• One-operand form. This form is identical to that used by the MUL instruction. Here, the
source operand (in a general-purpose register or memory location) is multiplied by the
value in the AL, AX, or EAX register (depending on the operand size) and the product is
stored in the AX, DX:AX, or EDX:EAX registers, respectively.

• Two-operand form. With this form the destination operand (the first operand) is
multiplied by the source operand (second operand). The destination operand is a general-
purpose register and the source operand is an immediate value, a general-purpose register,
or a memory location. The product is then stored in the destination operand location.

• Three-operand form. This form requires a destination operand (the first operand) and two
source operands (the second and the third operands). Here, the first source operand (which
can be a general-purpose register or a memory location) is multiplied by the second source
operand (an immediate value). The product is then stored in the destination operand (a
general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

Opcode Instruction Description

F6 /5 IMUL r/m8 AX‹ AL * r/m byte

F7 /5 IMUL r/m16 DX:AX ‹ AX * r/m word

F7 /5 IMUL r/m32 EDX:EAX ‹ EAX * r/m doubleword

0F AF /r IMUL r16,r/m16 word register ‹ word register * r/m word

0F AF /r IMUL r32,r/m32 doubleword register ‹ doubleword register * r/m
doubleword

6B /r ib IMUL r16,r/m16,imm8 word register ‹ r/m16 * sign-extended immediate byte

6B /r ib IMUL r32,r/m32,imm8 doubleword register ‹ r/m32 * sign-extended immediate
byte

6B /r ib IMUL r16,imm8 word register ‹ word register * sign-extended immediate
byte

6B /r ib IMUL r32,imm8 doubleword register ‹ doubleword register * sign-
extended immediate byte

69 /r iw IMUL r16,r/
m16,imm16

word register ‹ r/m16 * immediate word

69 /r id IMUL r32,r/
m32,imm32

doubleword register ‹ r/m32 * immediate doubleword

69 /r iw IMUL r16,imm16 word register ‹ r/m16 * immediate word

69 /r id IMUL r32,imm32 doubleword register ‹ r/m32 * immediate doubleword

3-322

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply (Continued)

The CF and OF flags are set when significant bits are carried into the upper half of the result.
The CF and OF flags are cleared when the result fits exactly in the lower half of the result.

The three forms of the IMUL instruction are similar in that the length of the product is calculated
to twice the length of the operands. With the one-operand form, the product is stored exactly in
the destination. With the two- and three- operand forms, however, result is truncated to the
length of the destination before it is stored in the destination register. Because of this truncation,
the CF or OF flag should be tested to ensure that no significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because the lower
half of the product is the same regardless if the operands are signed or unsigned. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

Operation

IF (NumberOfOperands ‹ 1)
THEN IF (OperandSize ‹ 8)

THEN
AX ‹ AL * SRC (* signed multiplication *)
IF ((AH ‹ 00H) OR (AH ‹ FFH))

THEN CF ‹ 0; OF ‹ 0;
ELSE CF ‹ 1; OF ‹ 1;

FI;
ELSE IF OperandSize ‹ 16

THEN
DX:AX ‹ AX * SRC (* signed multiplication *)
IF ((DX ‹ 0000H) OR (DX ‹ FFFFH))

THEN CF ‹ 0; OF ‹ 0;
ELSE CF ‹ 1; OF ‹ 1;

FI;
ELSE (* OperandSize ‹ 32 *)

EDX:EAX ‹ EAX * SRC (* signed multiplication *)
IF ((EDX ‹ 00000000H) OR (EDX ‹ FFFFFFFFH))

THEN CF ‹ 0; OF ‹ 0;
ELSE CF ‹ 1; OF ‹ 1;

FI;
FI;

ELSE IF (NumberOfOperands ‹ 2)
THEN

temp ‹ DEST * SRC (* signed multiplication; temp is double DEST size*)
DEST ‹ DEST * SRC (* signed multiplication *)
IF temp „ DEST

THEN CF ‹ 1; OF ‹ 1;
ELSE CF ‹ 0; OF ‹ 0;

FI;

ELSE (* NumberOfOperands ‹ 3 *)

3-323

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply (Continued)
DEST ‹ SRC1 * SRC2 (* signed multiplication *)
temp ‹ SRC1 * SRC2 (* signed multiplication; temp is double SRC1 size *)
IF temp „ DEST

THEN CF ‹ 1; OF ‹ 1;
ELSE CF ‹ 0; OF ‹ 0;

FI;
FI;

FI;

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when significant bits
are carried into the upper half of the result and cleared when the result fits exactly in the lower
half of the result. For the two- and three-operand forms of the instruction, the CF and OF flags
are set when the result must be truncated to fit in the destination operand size and cleared when
the result fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Richard Chang
Flags Af s Affect ected ed

3-321

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply

Description

Performs a signed multiplication of two operands. This instruction has three forms, depending
on the number of operands.

• One-operand form. This form is identical to that used by the MUL instruction. Here, the
source operand (in a general-purpose register or memory location) is multiplied by the
value in the AL, AX, or EAX register (depending on the operand size) and the product is
stored in the AX, DX:AX, or EDX:EAX registers, respectively.

• Two-operand form. With this form the destination operand (the first operand) is
multiplied by the source operand (second operand). The destination operand is a general-
purpose register and the source operand is an immediate value, a general-purpose register,
or a memory location. The product is then stored in the destination operand location.

• Three-operand form. This form requires a destination operand (the first operand) and two
source operands (the second and the third operands). Here, the first source operand (which
can be a general-purpose register or a memory location) is multiplied by the second source
operand (an immediate value). The product is then stored in the destination operand (a
general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

Opcode Instruction Description

F6 /5 IMUL r/m8 AX‹ AL * r/m byte

F7 /5 IMUL r/m16 DX:AX ‹ AX * r/m word

F7 /5 IMUL r/m32 EDX:EAX ‹ EAX * r/m doubleword

0F AF /r IMUL r16,r/m16 word register ‹ word register * r/m word

0F AF /r IMUL r32,r/m32 doubleword register ‹ doubleword register * r/m
doubleword

6B /r ib IMUL r16,r/m16,imm8 word register ‹ r/m16 * sign-extended immediate byte

6B /r ib IMUL r32,r/m32,imm8 doubleword register ‹ r/m32 * sign-extended immediate
byte

6B /r ib IMUL r16,imm8 word register ‹ word register * sign-extended immediate
byte

6B /r ib IMUL r32,imm8 doubleword register ‹ doubleword register * sign-
extended immediate byte

69 /r iw IMUL r16,r/
m16,imm16

word register ‹ r/m16 * immediate word

69 /r id IMUL r32,r/
m32,imm32

doubleword register ‹ r/m32 * immediate doubleword

69 /r iw IMUL r16,imm16 word register ‹ r/m16 * immediate word

69 /r id IMUL r32,imm32 doubleword register ‹ r/m32 * immediate doubleword

3-322

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply (Continued)

The CF and OF flags are set when significant bits are carried into the upper half of the result.
The CF and OF flags are cleared when the result fits exactly in the lower half of the result.

The three forms of the IMUL instruction are similar in that the length of the product is calculated
to twice the length of the operands. With the one-operand form, the product is stored exactly in
the destination. With the two- and three- operand forms, however, result is truncated to the
length of the destination before it is stored in the destination register. Because of this truncation,
the CF or OF flag should be tested to ensure that no significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because the lower
half of the product is the same regardless if the operands are signed or unsigned. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

Operation

IF (NumberOfOperands ‹ 1)
THEN IF (OperandSize ‹ 8)

THEN
AX ‹ AL * SRC (* signed multiplication *)
IF ((AH ‹ 00H) OR (AH ‹ FFH))

THEN CF ‹ 0; OF ‹ 0;
ELSE CF ‹ 1; OF ‹ 1;

FI;
ELSE IF OperandSize ‹ 16

THEN
DX:AX ‹ AX * SRC (* signed multiplication *)
IF ((DX ‹ 0000H) OR (DX ‹ FFFFH))

THEN CF ‹ 0; OF ‹ 0;
ELSE CF ‹ 1; OF ‹ 1;

FI;
ELSE (* OperandSize ‹ 32 *)

EDX:EAX ‹ EAX * SRC (* signed multiplication *)
IF ((EDX ‹ 00000000H) OR (EDX ‹ FFFFFFFFH))

THEN CF ‹ 0; OF ‹ 0;
ELSE CF ‹ 1; OF ‹ 1;

FI;
FI;

ELSE IF (NumberOfOperands ‹ 2)
THEN

temp ‹ DEST * SRC (* signed multiplication; temp is double DEST size*)
DEST ‹ DEST * SRC (* signed multiplication *)
IF temp „ DEST

THEN CF ‹ 1; OF ‹ 1;
ELSE CF ‹ 0; OF ‹ 0;

FI;

ELSE (* NumberOfOperands ‹ 3 *)

3-323

INSTRUCTION SET REFERENCE

IMUL—Signed Multiply (Continued)
DEST ‹ SRC1 * SRC2 (* signed multiplication *)
temp ‹ SRC1 * SRC2 (* signed multiplication; temp is double SRC1 size *)
IF temp „ DEST

THEN CF ‹ 1; OF ‹ 1;
ELSE CF ‹ 0; OF ‹ 0;

FI;
FI;

FI;

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when significant bits
are carried into the upper half of the result and cleared when the result fits exactly in the lower
half of the result. For the two- and three-operand forms of the instruction, the CF and OF flags
are set when the result must be truncated to fit in the destination operand size and cleared when
the result fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Indexed Addressing

• Operands of the form: [ESI + ECX*4 + DISP]

• ESI = Base Register

• ECX = Index Register

• 4 = Scale factor

• DISP = Displacement

• The operand is in memory

• The address of the memory location is
ESI + ECX*4 + DISP

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-20

BASIC EXECUTION ENVIRONMENT

• Index—The value in a general-purpose register.

• Scale factor—A value of 2, 4, or 8 that is multiplied by the index value.

The offset which results from adding these components is called an effective address. Each of
these components can have either a positive or negative (2s complement) value, with the excep-
tion of the scaling factor. Figure 3-9 shows all the possible ways that these components can be
combined to create an effective address in the selected segment.

The uses of general-purpose registers as base or index components are restricted in the following
manner:

• The ESP register cannot be used as an index register.

• When the ESP or EBP register is used as the base, the SS segment is the default segment.
In all other cases, the DS segment is the default segment.

The base, index, and displacement components can be used in any combination, and any of these
components can be null. A scale factor may be used only when an index also is used. Each
possible combination is useful for data structures commonly used by programmers in high-level
languages and assembly language. The following addressing modes suggest uses for common
combinations of address components.

Displacement

A displacement alone represents a direct (uncomputed) offset to the operand. Because the
displacement is encoded in the instruction, this form of an address is sometimes called an abso-
lute or static address. It is commonly used to access a statically allocated scalar operand.

Base

A base alone represents an indirect offset to the operand. Since the value in the base register can
change, it can be used for dynamic storage of variables and data structures.

Figure 3-9. Offset (or Effective Address) Computation

Offset = Base + (Index * Scale) + Displacement

Base

EAX
EBX
ECX
EDX
ESP
EBP
ESI
EDI

EAX
EBX
ECX
EDX
EBP
ESI
EDI

1 None

2

4

8

8-bit

16-bit

32-bit

Index Scale Displacement

*+ +

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

MOV EAX, [EDI + 20]

Data

Code

.

.

.

MOV…
20

Base + Displacement

+

1734

08A94068

08A94068

08A94088

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

MOV EAX, [ECX*4 + 08A94068]

Data

Code

.

.

.

MOV…
08A94068

Index*Scale + Displacement

+

2

08A94068

08A94070

*4

1734

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

MOV EAX, [EDI + ECX + 20]

Data

Code

.

.

.

MOV…
20

Base + Index + Displacement

+

2

08A94068

08A9408A1734

08A94068

EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

MOV EAX, [EDI + ECX*4 + 20]

Data

Code

.

.

.

MOV…
20

Base + Index*Scale + Displacement

+

2

08A94068

08A940901734

08A94068

*4

Typical Uses for Indexed Addressing

• Base + Displacement
access character in a string or field of a record

access a local variable in function call stack

• Index*Scale + Displacement
access items in an array where size of item is 2, 4 or 8 bytes

• Base + Index + Displacement
access two dimensional array (displacement has address of array)

access an array of records (displacement has offset of field in a record)

• Base + (Index*Scale) + Displacement
access two dimensional array where size of item is 2, 4 or 8 bytes

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

; File: index1.asm
;
; This program demonstrates the use of an indexed addressing mode
; to access array elements.
;
; This program has no I/O. Use the debugger to examine its effects.
;
 SECTION .data ; Data section

arr: dd 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ; ten 32-bit words
base: equ arr - 4

 SECTION .text ; Code section.
 global _start
_start: nop ; Entry point.

 ; Add 5 to each element of the array stored in arr.
 ; Simulate:
 ;
 ; for (i = 0 ; i < 10 ; i++) {
 ; arr[i] += 5 ;
 ; }

init1: mov ecx, 0 ; ecx simulates i
loop1: cmp ecx, 10 ; i < 10 ?
 jge done1
 add [ecx*4+arr], dword 5 ; arr[i] += 5
 inc ecx ; i++
 jmp loop1
done1:

 ; more idiomatic for an assembly language program
init2: mov ecx, 9 ; last array elt's index
loop2: add [ecx*4+arr], dword 5
 dec ecx
 jge loop2 ; again if ecx >= 0

 ; another way
init3: mov edi, base ; base computed by ld
 mov ecx, 10 ; for(i=10 ; i>0 ; i--)
loop3: add [edi+ecx*4], dword 5
 loop loop3 ; loop = dec ecx, jne

alldone:
 mov ebx, 0 ; exit code, 0=normal
 mov eax, 1 ; Exit.
 int 80H ; Call kernel.

Script started on Fri Sep 19 13:06:02 2003
linux3% nasm -f elf index1.asm
linux3% ld index1.o

linux3% gdb a.out
GNU gdb Red Hat Linux (5.2-2)
...
(gdb) break *init1
Breakpoint 1 at 0x8048081
(gdb) break *init2
Breakpoint 2 at 0x8048099
(gdb) break *init3
Breakpoint 3 at 0x80480ac
(gdb) break * alldone
Breakpoint 4 at 0x80480bf
(gdb) run
Starting program: /afs/umbc.edu/users/c/h/chang/home/asm/a.out

Breakpoint 1, 0x08048081 in init1 ()
(gdb) x/10wd &arr
0x80490cc <arr>: 0 1 2 3
0x80490dc <arr+16>: 4 5 6 7
0x80490ec <arr+32>: 8 9
(gdb) cont
Continuing.

Breakpoint 2, 0x08048099 in init2 ()
(gdb) x/10wd &arr
0x80490cc <arr>: 5 6 7 8
0x80490dc <arr+16>: 9 10 11 12
0x80490ec <arr+32>: 13 14
(gdb) cont
Continuing.

Breakpoint 3, 0x080480ac in init3 ()
(gdb) x/10wd &arr
0x80490cc <arr>: 10 11 12 13
0x80490dc <arr+16>: 14 15 16 17
0x80490ec <arr+32>: 18 19
(gdb) cont
Continuing.

Breakpoint 4, 0x080480bf in alldone ()
(gdb) x/10wd &arr
0x80490cc <arr>: 15 16 17 18
0x80490dc <arr+16>: 19 20 21 22
0x80490ec <arr+32>: 23 24
(gdb) cont
Continuing.

Program exited normally.
(gdb) quit
linux3% exit
exit

Script done on Fri Sep 19 13:07:41 2003

; File: index2.asm
;
; This program demonstrates the use of an indexed addressing mode
; to access 2 dimensional array elements.
;
; This program has no I/O. Use the debugger to examine its effects.
;
 SECTION .data ; Data section

 ; simulates a 2-dim array
twodim:
row1: dd 00, 01, 02, 03, 04, 05, 06, 07, 08, 09
row2: dd 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
 dd 20, 21, 22, 23, 24, 25, 26, 27, 28, 29
 dd 30, 31, 32, 33, 34, 35, 36, 37, 38, 39
 dd 40, 41, 42, 43, 44, 45, 46, 47, 48, 49
 dd 50, 51, 52, 53, 54, 55, 56, 57, 58, 59
 dd 60, 61, 62, 63, 64, 65, 66, 67, 68, 69
 dd 70, 71, 72, 73, 74, 75, 76, 77, 78, 79
 dd 80, 81, 82, 83, 84, 85, 86, 87, 88, 89
 dd 90, 91, 92, 93, 94, 95, 96, 97, 98, 99

rowlen: equ row2 - row1

 SECTION .text ; Code section.
 global _start
_start: nop ; Entry point.

 ; Add 5 to each element of row 7. Simulate:
 ;
 ; for (i = 0 ; i < 10 ; i++) {
 ; towdim[7][i] += 5 ;
 ; }

init1: mov ecx, 0 ; ecx simulates i
 mov eax, rowlen ; offset of twodim[7][0]
 mov edx, 7
 mul edx ; eax := eax * edx
 jc alldone ; 64-bit product is bad

loop1: cmp ecx, 10 ; i < 10 ?
 jge done1
 add [eax+4*ecx+twodim], dword 5
 inc ecx ; i++
 jmp loop1
done1:

alldone:
 mov ebx, 0 ; exit code, 0=normal
 mov eax, 1 ; Exit.
 int 80H ; Call kernel.

Script started on Fri Sep 19 13:19:22 2003
linux3% nasm -f elf index2.asm
linux3% ld index2.o
linux3%
linux3% gdb a.out
GNU gdb Red Hat Linux (5.2-2)
...
(gdb) break *init1
Breakpoint 1 at 0x8048081
(gdb) break *alldone
Breakpoint 2 at 0x80480a7
(gdb) run
Starting program: /afs/umbc.edu/users/c/h/chang/home/asm/a.out

Breakpoint 1, 0x08048081 in init1 ()
(gdb) x/10wd &twodim
0x80490b4 <twodim>: 0 1 2 3
0x80490c4 <twodim+16>: 4 5 6 7
0x80490d4 <twodim+32>: 8 9
(gdb) x/10wd &twodim+60
0x80491a4 <row2+200>: 60 61 62 63
0x80491b4 <row2+216>: 64 65 66 67
0x80491c4 <row2+232>: 68 69
(gdb)
0x80491cc <row2+240>: 70 71 72 73
0x80491dc <row2+256>: 74 75 76 77
0x80491ec <row2+272>: 78 79
(gdb)
0x80491f4 <row2+280>: 80 81 82 83
0x8049204 <row2+296>: 84 85 86 87
0x8049214 <row2+312>: 88 89
(gdb) cont
Continuing.

Breakpoint 2, 0x080480a7 in done1 ()
(gdb) x/10wd &twodim+60
0x80491a4 <row2+200>: 60 61 62 63
0x80491b4 <row2+216>: 64 65 66 67
0x80491c4 <row2+232>: 68 69
(gdb)
0x80491cc <row2+240>: 75 76 77 78
0x80491dc <row2+256>: 79 80 81 82
0x80491ec <row2+272>: 83 84
(gdb)
0x80491f4 <row2+280>: 80 81 82 83
0x8049204 <row2+296>: 84 85 86 87
0x8049214 <row2+312>: 88 89
(gdb) cont
Continuing.

Program exited normally.
(gdb) quit
linux3% exit
exit

Script done on Fri Sep 19 13:20:35 2003

i386 String Instructions

• Special instructions for searching & copying strings

• Assumes that AL holds the data
• Assumes that ECX holds the “count”

• Assumes that ESI and/or EDI point to the string(s)

• Some examples (there are many others):
LODS: loads AL with [ESI], then increments or decrements ESI

STOS: stores AL in [EDI], then increments or decrements EDI

CLD/STD: clears/sets direction flag DF. Makes LODS & STOS auto-inc/dec.

LOOP: decrements ECX. Jumps to label if ECX != 0 after decrement.

SCAS: compares AL with [EDI], sets status flags, auto-inc/dec EDI.

REP: Repeats a string instruction

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

3-391

INSTRUCTION SET REFERENCE

LODS/LODSB/LODSW/LODSD—Load String

Description

Loads a byte, word, or doubleword from the source operand into the AL, AX, or EAX register,
respectively. The source operand is a memory location, the address of which is read from the
DS:EDI or the DS:SI registers (depending on the address-size attribute of the instruction, 32 or
16, respectively). The DS segment may be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the LODS
mnemonic) allows the source operand to be specified explicitly. Here, the source operand should
be a symbol that indicates the size and location of the source value. The destination operand is
then automatically selected to match the size of the source operand (the AL register for byte
operands, AX for word operands, and EAX for doubleword operands). This explicit-operands
form is provided to allow documentation; however, note that the documentation provided by this
form can be misleading. That is, the source operand symbol must specify the correct type (size)
of the operand (byte, word, or doubleword), but it does not have to specify the correct location.
The location is always specified by the DS:(E)SI registers, which must be loaded correctly
before the load string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
LODS instructions. Here also DS:(E)SI is assumed to be the source operand and the AL, AX, or
EAX register is assumed to be the destination operand. The size of the source and destination
operands is selected with the mnemonic: LODSB (byte loaded into register AL), LODSW (word
loaded into AX), or LODSD (doubleword loaded into EAX).

After the byte, word, or doubleword is transferred from the memory location into the AL, AX,
or EAX register, the (E)SI register is incremented or decremented automatically according to the
setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)SI register is incre-
mented; if the DF flag is 1, the ESI register is decremented.) The (E)SI register is incremented
or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword oper-
ations.

The LODS, LODSB, LODSW, and LODSD instructions can be preceded by the REP prefix for
block loads of ECX bytes, words, or doublewords. More often, however, these instructions
are used within a LOOP construct because further processing of the data moved into the register
is usually necessary before the next transfer can be made. See “REP/REPE/REPZ/REPNE
/REPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP prefix.

Opcode Instruction Description

AC LODS m8 Load byte at address DS:(E)SI into AL

AD LODS m16 Load word at address DS:(E)SI into AX

AD LODS m32 Load doubleword at address DS:(E)SI into EAX

AC LODSB Load byte at address DS:(E)SI into AL

AD LODSW Load word at address DS:(E)SI into AX

AD LODSD Load doubleword at address DS:(E)SI into EAX

3-392

INSTRUCTION SET REFERENCE

LODS/LODSB/LODSW/LODSD—Load String (Continued)

Operation

IF (byte load)
THEN

AL ‹ SRC; (* byte load *)
THEN IF DF ‹ 0

THEN (E)SI ‹ (E)SI + 1;
ELSE (E)SI ‹ (E)SI – 1;

FI;
ELSE IF (word load)

THEN
AX ‹ SRC; (* word load *)

THEN IF DF ‹ 0
THEN (E)SI ‹ (E)SI + 2;
ELSE (E)SI ‹ (E)SI – 2;

FI;
ELSE (* doubleword transfer *)

EAX ‹ SRC; (* doubleword load *)
THEN IF DF ‹ 0

THEN (E)SI ‹ (E)SI + 4;
ELSE (E)SI ‹ (E)SI – 4;

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

3-734

INSTRUCTION SET REFERENCE

STOS/STOSB/STOSW/STOSD—Store String

Description

Stores a byte, word, or doubleword from the AL, AX, or EAX register, respectively, into the
destination operand. The destination operand is a memory location, the address of which is read
from either the ES:EDI or the ES:DI registers (depending on the address-size attribute of the
instruction, 32 or 16, respectively). The ES segment cannot be overridden with a segment over-
ride prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the STOS
mnemonic) allows the destination operand to be specified explicitly. Here, the destination
operand should be a symbol that indicates the size and location of the destination value. The
source operand is then automatically selected to match the size of the destination operand (the
AL register for byte operands, AX for word operands, and EAX for doubleword operands). This
explicit-operands form is provided to allow documentation; however, note that the documenta-
tion provided by this form can be misleading. That is, the destination operand symbol must
specify the correct type (size) of the operand (byte, word, or doubleword), but it does not have
to specify the correct location. The location is always specified by the ES:(E)DI registers, which
must be loaded correctly before the store string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
STOS instructions. Here also ES:(E)DI is assumed to be the destination operand and the AL,
AX, or EAX register is assumed to be the source operand. The size of the destination and source
operands is selected with the mnemonic: STOSB (byte read from register AL), STOSW (word
from AX), or STOSD (doubleword from EAX).

After the byte, word, or doubleword is transferred from the AL, AX, or EAX register to the
memory location, the (E)DI register is incremented or decremented automatically according to
the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is incre-
mented; if the DF flag is 1, the (E)DI register is decremented.) The (E)DI register is incremented
or decremented by 1 for byte operations, by 2 for word operations, or by 4 for doubleword oper-
ations.

Opcode Instruction Description

AA STOS m8 Store AL at address ES:(E)DI

AB STOS m16 Store AX at address ES:(E)DI

AB STOS m32 Store EAX at address ES:(E)DI

AA STOSB Store AL at address ES:(E)DI

AB STOSW Store AX at address ES:(E)DI

AB STOSD Store EAX at address ES:(E)DI

3-735

INSTRUCTION SET REFERENCE

STOS/STOSB/STOSW/STOSD—Store String (Continued)

The STOS, STOSB, STOSW, and STOSD instructions can be preceded by the REP prefix for
block loads of ECX bytes, words, or doublewords. More often, however, these instructions are
used within a LOOP construct because data needs to be moved into the AL, AX, or EAX register
before it can be stored. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation
Prefix” in this chapter for a description of the REP prefix.

Operation

IF (byte store)
THEN

DEST ‹ AL;
THEN IF DF ‹ 0

THEN (E)DI ‹ (E)DI + 1;
ELSE (E)DI ‹ (E)DI – 1;

FI;
ELSE IF (word store)

THEN
DEST ‹ AX;

THEN IF DF ‹ 0
THEN (E)DI ‹ (E)DI + 2;
ELSE (E)DI ‹ (E)DI – 2;

FI;
ELSE (* doubleword store *)

DEST ‹ EAX;
THEN IF DF ‹ 0

THEN (E)DI ‹ (E)DI + 4;
ELSE (E)DI ‹ (E)DI – 4;

FI;
FI;

FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

3-72

INSTRUCTION SET REFERENCE

CLD—Clear Direction Flag

Description

Clears the DF flag in the EFLAGS register. When the DF flag is set to 0, string operations incre-
ment the index registers (ESI and/or EDI).

Operation

DF ‹ 0;

Flags Affected

The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

FC CLD Clear DF flag

3-729

INSTRUCTION SET REFERENCE

STD—Set Direction Flag

Description

Sets the DF flag in the EFLAGS register. When the DF flag is set to 1, string operations decre-
ment the index registers (ESI and/or EDI).

Operation

DF ‹ 1;

Flags Affected

The DF flag is set. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Operation

DF ‹ 1;

Exceptions (All Operating Modes)

None.

Opcode Instruction Description

FD STD Set DF flag

3-394

INSTRUCTION SET REFERENCE

LOOP/LOOPcc—Loop According to ECX Counter

Description

Performs a loop operation using the ECX or CX register as a counter. Each time the LOOP
instruction is executed, the count register is decremented, then checked for 0. If the count is 0,
the loop is terminated and program execution continues with the instruction following the LOOP
instruction. If the count is not zero, a near jump is performed to the destination (target) operand,
which is presumably the instruction at the beginning of the loop. If the address-size attribute is
32 bits, the ECX register is used as the count register; otherwise the CX register is used.

The target instruction is specified with a relative offset (a signed offset relative to the current
value of the instruction pointer in the EIP register). This offset is generally specified as a label
in assembly code, but at the machine code level, it is encoded as a signed, 8-bit immediate value,
which is added to the instruction pointer. Offsets of –128 to +127 are allowed with this
instruction.

Some forms of the loop instruction (LOOPcc) also accept the ZF flag as a condition for termi-
nating the loop before the count reaches zero. With these forms of the instruction, a condition
code (cc) is associated with each instruction to indicate the condition being tested for. Here, the
LOOPcc instruction itself does not affect the state of the ZF flag; the ZF flag is changed by other
instructions in the loop.

Operation

IF AddressSize ‹ 32
THEN

Count is ECX;
ELSE (* AddressSize ‹ 16 *)

Count is CX;
FI;
Count ‹ Count – 1;

IF instruction is not LOOP
THEN

IF (instruction ‹ LOOPE) OR (instruction ‹ LOOPZ)
THEN

IF (ZF =1) AND (Count „ 0)
THEN BranchCond ‹ 1;
ELSE BranchCond ‹ 0;

Opcode Instruction Description

E2 cb LOOP rel8 Decrement count; jump short if count „ 0

E1 cb LOOPE rel8 Decrement count; jump short if count „ 0 and ZF=1

E1 cb LOOPZ rel8 Decrement count; jump short if count „ 0 and ZF=1

E0 cb LOOPNE rel8 Decrement count; jump short if count „ 0 and ZF=0

E0 cb LOOPNZ rel8 Decrement count; jump short if count „ 0 and ZF=0

3-395

INSTRUCTION SET REFERENCE

LOOP/LOOPcc—Loop According to ECX Counter (Continued)
FI;

FI;
IF (instruction ‹ LOOPNE) OR (instruction ‹ LOOPNZ)

THEN
IF (ZF =0) AND (Count „ 0)

THEN BranchCond ‹ 1;
ELSE BranchCond ‹ 0;

FI;
FI;

ELSE (* instruction ‹ LOOP *)
IF (Count „ 0)

THEN BranchCond ‹ 1;
ELSE BranchCond ‹ 0;

FI;
FI;
IF BranchCond ‹ 1

THEN
 EIP ‹ EIP + SignExtend(DEST);

IF OperandSize ‹ 16
THEN

EIP ‹ EIP AND 0000FFFFH;
ELSE (* OperandSize = 32 *)

IF EIP < CS.Base OR EIP > CS.Limit
#GP

FI;
ELSE

Terminate loop and continue program execution at EIP;
FI;

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

Real-Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment or is
outside of the effective address space from 0 to FFFFH. This condition can
occur if a 32-bit address size override prefix is used.

Virtual-8086 Mode Exceptions

Same exceptions as in Real Address Mode

; File: toupper2.asm last updated 09/26/2001
;
; Convert user input to upper case.
; This version uses some special looping instructions.
;
; Assemble using NASM: nasm -f elf toupper2.asm
; Link with ld: ld toupper2.o
;

; [... same old, same old ...]

 ; Loop for upper case conversion
 ; assuming rlen > 0
 ;
L1_init:
 mov ecx, [rlen] ; initialize count
 mov esi, buf ; point to start of buffer
 mov edi, newstr ; point to start of new str
 cld ; clear dir. flag, inc ptrs

L1_top:
 lodsb ; load al w char in [esi++]
 cmp al, 'a' ; less than 'a'?
 jb L1_cont
 cmp al, 'z' ; more than 'z'?
 ja L1_cont
 and al, 11011111b ; convert to uppercase

L1_cont:
 stosb ; store al in [edi++]
 loop L1_top ; loop if --ecx > 0
L1_end:

3-696

INSTRUCTION SET REFERENCE

SCAS/SCASB/SCASW/SCASD—Scan String

Description

Compares the byte, word, or double word specified with the memory operand with the value in
the AL, AX, or EAX register, and sets the status flags in the EFLAGS register according to the
results. The memory operand address is read from either the ES:EDI or the ES:DI registers
(depending on the address-size attribute of the instruction, 32 or 16, respectively). The ES
segment cannot be overridden with a segment override prefix.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operand form (specified with the SCAS
mnemonic) allows the memory operand to be specified explicitly. Here, the memory operand
should be a symbol that indicates the size and location of the operand value. The register
operand is then automatically selected to match the size of the memory operand (the AL register
for byte comparisons, AX for word comparisons, and EAX for doubleword comparisons). This
explicit-operand form is provided to allow documentation; however, note that the documenta-
tion provided by this form can be misleading. That is, the memory operand symbol must specify
the correct type (size) of the operand (byte, word, or doubleword), but it does not have to specify
the correct location. The location is always specified by the ES:(E)DI registers, which must be
loaded correctly before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
SCAS instructions. Here also ES:(E)DI is assumed to be the memory operand and the AL, AX,
or EAX register is assumed to be the register operand. The size of the two operands is selected
with the mnemonic: SCASB (byte comparison), SCASW (word comparison), or SCASD
(doubleword comparison).

After the comparison, the (E)DI register is incremented or decremented automatically according
to the setting of the DF flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is
incremented; if the DF flag is 1, the (E)DI register is decremented.) The (E)DI register is incre-
mented or decremented by 1 for byte operations, by 2 for word operations, or by 4 for double-
word operations.

The SCAS, SCASB, SCASW, and SCASD instructions can be preceded by the REP prefix for
block comparisons of ECX bytes, words, or doublewords. More often, however, these instruc-
tions will be used in a LOOP construct that takes some action based on the setting of the status
flags before the next comparison is made. See “REP/REPE/REPZ/REPNE /REPNZ—Repeat
String Operation Prefix” in this chapter for a description of the REP prefix.

Opcode Instruction Description

AE SCAS m8 Compare AL with byte at ES:(E)DI and set status flags

AF SCAS m16 Compare AX with word at ES:(E)DI and set status flags

AF SCAS m32 Compare EAX with doubleword at ES(E)DI and set status flags

AE SCASB Compare AL with byte at ES:(E)DI and set status flags

AF SCASW Compare AX with word at ES:(E)DI and set status flags

AF SCASD Compare EAX with doubleword at ES:(E)DI and set status flags

3-697

INSTRUCTION SET REFERENCE

SCAS/SCASB/SCASW/SCASD—Scan String (Continued)

Operation

IF (byte cmparison)
THEN

temp ‹ AL - SRC;
SetStatusFlags(temp);

THEN IF DF ‹ 0
THEN (E)DI ‹ (E)DI + 1;
ELSE (E)DI ‹ (E)DI – 1;

FI;
ELSE IF (word comparison)

THEN
temp ‹ AX - SRC;
SetStatusFlags(temp)

THEN IF DF ‹ 0
THEN (E)DI ‹ (E)DI + 2;
ELSE (E)DI ‹ (E)DI – 2;

FI;
ELSE (* doubleword comparison *)

temp ‹ EAX - SRC;
SetStatusFlags(temp)

THEN IF DF ‹ 0
THEN (E)DI ‹ (E)DI + 4;
ELSE (E)DI ‹ (E)DI – 4;

FI;
FI;

FI;

Flags Affected

The OF, SF, ZF, AF, PF, and CF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the limit of the ES
segment.

If the ES register contains a null segment selector.

If an illegal memory operand effective address in the ES segment is given.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

3-674

INSTRUCTION SET REFERENCE

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix

Description

Repeats a string instruction the number of times specified in the count register ((E)CX) or until
the indicated condition of the ZF flag is no longer met. The REP (repeat), REPE (repeat while
equal), REPNE (repeat while not equal), REPZ (repeat while zero), and REPNZ (repeat while
not zero) mnemonics are prefixes that can be added to one of the string instructions. The REP
prefix can be added to the INS, OUTS, MOVS, LODS, and STOS instructions, and the REPE,
REPNE, REPZ, and REPNZ prefixes can be added to the CMPS and SCAS instructions. (The
REPZ and REPNZ prefixes are synonymous forms of the REPE and REPNE prefixes, respec-
tively.) The behavior of the REP prefix is undefined when used with non-string instructions.

The REP prefixes apply only to one string instruction at a time. To repeat a block of instructions,
use the LOOP instruction or another looping construct.

Opcode Instruction Description

F3 6C REP INS r/m8, DX Input (E)CX bytes from port DX into ES:[(E)DI]

F3 6D REP INS r/m16, DX Input (E)CX words from port DX into ES:[(E)DI]

F3 6D REP INS r/m32, DX Input (E)CX doublewords from port DX into ES:[(E)DI]

F3 A4 REP MOVS m8, m8 Move (E)CX bytes from DS:[(E)SI] to ES:[(E)DI]

F3 A5 REP MOVS m16, m16 Move (E)CX words from DS:[(E)SI] to ES:[(E)DI]

F3 A5 REP MOVS m32, m32 Move (E)CX doublewords from DS:[(E)SI] to ES:[(E)DI]

F3 6E REP OUTS DX, r/m8 Output (E)CX bytes from DS:[(E)SI] to port DX

F3 6F REP OUTS DX, r/m16 Output (E)CX words from DS:[(E)SI] to port DX

F3 6F REP OUTS DX, r/m32 Output (E)CX doublewords from DS:[(E)SI] to port DX

F3 AC REP LODS AL Load (E)CX bytes from DS:[(E)SI] to AL

F3 AD REP LODS AX Load (E)CX words from DS:[(E)SI] to AX

F3 AD REP LODS EAX Load (E)CX doublewords from DS:[(E)SI] to EAX

F3 AA REP STOS m8 Fill (E)CX bytes at ES:[(E)DI] with AL

F3 AB REP STOS m16 Fill (E)CX words at ES:[(E)DI] with AX

F3 AB REP STOS m32 Fill (E)CX doublewords at ES:[(E)DI] with EAX

F3 A6 REPE CMPS m8, m8 Find nonmatching bytes in ES:[(E)DI] and DS:[(E)SI]

F3 A7 REPE CMPS m16, m16 Find nonmatching words in ES:[(E)DI] and DS:[(E)SI]

F3 A7 REPE CMPS m32, m32 Find nonmatching doublewords in ES:[(E)DI] and DS:[(E)SI]

F3 AE REPE SCAS m8 Find non-AL byte starting at ES:[(E)DI]

F3 AF REPE SCAS m16 Find non-AX word starting at ES:[(E)DI]

F3 AF REPE SCAS m32 Find non-EAX doubleword starting at ES:[(E)DI]

F2 A6 REPNE CMPS m8, m8 Find matching bytes in ES:[(E)DI] and DS:[(E)SI]

F2 A7 REPNE CMPS m16, m16 Find matching words in ES:[(E)DI] and DS:[(E)SI]

F2 A7 REPNE CMPS m32, m32 Find matching doublewords in ES:[(E)DI] and DS:[(E)SI]

F2 AE REPNE SCAS m8 Find AL, starting at ES:[(E)DI]

F2 AF REPNE SCAS m16 Find AX, starting at ES:[(E)DI]

F2 AF REPNE SCAS m32 Find EAX, starting at ES:[(E)DI]

3-675

INSTRUCTION SET REFERENCE

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix
(Continued)

All of these repeat prefixes cause the associated instruction to be repeated until the count in
register (E)CX is decremented to 0 (see the following table). (If the current address-size attribute
is 32, register ECX is used as a counter, and if the address-size attribute is 16, the CX register is
used.) The REPE, REPNE, REPZ, and REPNZ prefixes also check the state of the ZF flag after
each iteration and terminate the repeat loop if the ZF flag is not in the specified state. When both
termination conditions are tested, the cause of a repeat termination can be determined either by
testing the (E)CX register with a JECXZ instruction or by testing the ZF flag with a JZ, JNZ,
and JNE instruction.

When the REPE/REPZ and REPNE/REPNZ prefixes are used, the ZF flag does not require
initialization because both the CMPS and SCAS instructions affect the ZF flag according to the
results of the comparisons they make.

A repeating string operation can be suspended by an exception or interrupt. When this happens,
the state of the registers is preserved to allow the string operation to be resumed upon a return
from the exception or interrupt handler. The source and destination registers point to the next
string elements to be operated on, the EIP register points to the string instruction, and the ECX
register has the value it held following the last successful iteration of the instruction. This mech-
anism allows long string operations to proceed without affecting the interrupt response time of
the system.

When a fault occurs during the execution of a CMPS or SCAS instruction that is prefixed with
REPE or REPNE, the EFLAGS value is restored to the state prior to the execution of the instruc-
tion. Since the SCAS and CMPS instructions do not use EFLAGS as an input, the processor can
resume the instruction after the page fault handler.

Use the REP INS and REP OUTS instructions with caution. Not all I/O ports can handle the rate
at which these instructions execute.

A REP STOS instruction is the fastest way to initialize a large block of memory.

Repeat Prefix Termination Condition 1 Termination Condition 2

REP ECX=0 None

REPE/REPZ ECX=0 ZF=0

REPNE/REPNZ ECX=0 ZF=1

3-676

INSTRUCTION SET REFERENCE

REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix
(Continued)

Operation

IF AddressSize ‹ 16
THEN

use CX for CountReg;
ELSE (* AddressSize ‹ 32 *)

use ECX for CountReg;
FI;
WHILE CountReg „ 0

DO
service pending interrupts (if any);
execute associated string instruction;
CountReg ‹ CountReg – 1;
IF CountReg ‹ 0

THEN exit WHILE loop
FI;
IF (repeat prefix is REPZ or REPE) AND (ZF=0)
OR (repeat prefix is REPNZ or REPNE) AND (ZF=1)

THEN exit WHILE loop
FI;

OD;

Flags Affected

None; however, the CMPS and SCAS instructions do set the status flags in the EFLAGS
register.

Exceptions (All Operating Modes)

None; however, exceptions can be generated by the instruction a repeat prefix is associated with.

; File: rep.asm
;
; Demonstrates the use of the REP prefix with
; string instructions.
;
; This program does no I/O. Use gdb to examine its effects.
;
 SECTION .data ; Data section

msg: db "Hello, world", 10 ; The string to print.
len: equ $-msg

 SECTION .text ; Code section.
 global _start
_start: nop ; Entry point.

find: mov al, 'o' ; look for an 'o'
 mov edi, msg ; here
 mov ecx, len ; limit repetitions
 cld ; auto inc edi
 repne scasb ; while (al != [edi])
 jnz not_found ;
 mov bl, [edi-1] ; what did we find?
not_found:

erase: mov edi, msg ; where?
 mov ecx, len ; how many bytes?
 mov al, '?' ; with which char?
 cld ; auto inc edi
 rep stosb

alldone:
 mov ebx, 0 ; exit code, 0=normal
 mov eax, 1 ; Exit.
 int 80H ; Call kernel.

Script started on Fri Sep 19 14:51:13 2003
linux3% nasm -f elf rep.asm
linux3% ld rep.o
linux3%
linux3% gdb a.out
GNU gdb Red Hat Linux (5.2-2)
...

(gdb) display/i $eip
(gdb) display/x $edi
(gdb) display $ecx
(gdb) display/c $ebx
(gdb) display/c $eax

(gdb) break *find
Breakpoint 1 at 0x8048081
(gdb) break *erase
Breakpoint 2 at 0x8048095
(gdb) break *alldone
Breakpoint 3 at 0x80480a4
(gdb) run
Starting program: /afs/umbc.edu/users/c/h/chang/home/asm/a.out

Breakpoint 1, 0x08048081 in find ()
5: /c $eax = 0 '\0'
4: /c $ebx = 0 '\0'
3: $ecx = 0
2: /x $edi = 0x0
1: x/i $eip 0x8048081 <find>: mov al,0x6f
(gdb) x/14cb &msg
0x80490b0 <msg>: 72 'H' 101 'e' 108 'l' 108 'l' 111 'o' 44
',' 32 ' ' 119 'w'
0x80490b8 <msg+8>: 111 'o' 114 'r' 108 'l' 100 'd' 10 '\n' 0
'\0'
(gdb) si
0x08048083 in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'
3: $ecx = 0
2: /x $edi = 0x0
1: x/i $eip 0x8048083 <find+2>: mov edi,0x80490b0
(gdb)
0x08048088 in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'
3: $ecx = 0
2: /x $edi = 0x80490b0
1: x/i $eip 0x8048088 <find+7>: mov ecx,0xd
(gdb)
0x0804808d in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'
3: $ecx = 13
2: /x $edi = 0x80490b0
1: x/i $eip 0x804808d <find+12>: cld

(gdb)
0x0804808e in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'
3: $ecx = 13
2: /x $edi = 0x80490b0
1: x/i $eip 0x804808e <find+13>: repnz scas al,es:[edi]
(gdb)
0x0804808e in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'
3: $ecx = 12
2: /x $edi = 0x80490b1
1: x/i $eip 0x804808e <find+13>: repnz scas al,es:[edi]
(gdb)
0x0804808e in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'
3: $ecx = 11
2: /x $edi = 0x80490b2
1: x/i $eip 0x804808e <find+13>: repnz scas al,es:[edi]
(gdb)
0x0804808e in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'
3: $ecx = 10
2: /x $edi = 0x80490b3
1: x/i $eip 0x804808e <find+13>: repnz scas al,es:[edi]
(gdb)
0x0804808e in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'
3: $ecx = 9
2: /x $edi = 0x80490b4
1: x/i $eip 0x804808e <find+13>: repnz scas al,es:[edi]
(gdb)
0x08048090 in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'
3: $ecx = 8
2: /x $edi = 0x80490b5
1: x/i $eip 0x8048090 <find+15>: jne 0x8048095 <not_found>
(gdb)
0x08048092 in find ()
5: /c $eax = 111 'o'
4: /c $ebx = 0 '\0'
3: $ecx = 8
2: /x $edi = 0x80490b5
1: x/i $eip 0x8048092 <find+17>: mov bl,BYTE PTR [edi-1]
(gdb)

Breakpoint 2, 0x08048095 in not_found ()
5: /c $eax = 111 'o'
4: /c $ebx = 111 'o'
3: $ecx = 8
2: /x $edi = 0x80490b5
1: x/i $eip 0x8048095 <not_found>: mov edi,0x80490b0

(gdb)
0x0804809a in not_found ()
5: /c $eax = 111 'o'
4: /c $ebx = 111 'o'
3: $ecx = 8
2: /x $edi = 0x80490b0
1: x/i $eip 0x804809a <not_found+5>: mov ecx,0xd
(gdb)
0x0804809f in not_found ()
5: /c $eax = 111 'o'
4: /c $ebx = 111 'o'
3: $ecx = 13
2: /x $edi = 0x80490b0
1: x/i $eip 0x804809f <not_found+10>: mov al,0x3f
(gdb)
0x080480a1 in not_found ()
5: /c $eax = 63 '?'
4: /c $ebx = 111 'o'
3: $ecx = 13
2: /x $edi = 0x80490b0
1: x/i $eip 0x80480a1 <not_found+12>: cld
(gdb)
0x080480a2 in not_found ()
5: /c $eax = 63 '?'
4: /c $ebx = 111 'o'
3: $ecx = 13
2: /x $edi = 0x80490b0
1: x/i $eip 0x80480a2 <not_found+13>: repz stos es:[edi],al
(gdb)
0x080480a2 in not_found ()
5: /c $eax = 63 '?'
4: /c $ebx = 111 'o'
3: $ecx = 12
2: /x $edi = 0x80490b1
1: x/i $eip 0x80480a2 <not_found+13>: repz stos es:[edi],al
(gdb)
0x080480a2 in not_found ()
5: /c $eax = 63 '?'
4: /c $ebx = 111 'o'
3: $ecx = 11
2: /x $edi = 0x80490b2
1: x/i $eip 0x80480a2 <not_found+13>: repz stos es:[edi],al
(gdb) cont
Continuing.

Breakpoint 3, 0x080480a4 in alldone ()
5: /c $eax = 63 '?'
4: /c $ebx = 111 'o'
3: $ecx = 0
2: /x $edi = 0x80490bd
1: x/i $eip 0x80480a4 <alldone>: mov ebx,0x0
(gdb) x/14cb &msg
0x80490b0 <msg>: 63 '?' 63 '?' 63 '?' 63 '?' 63 '?' 63
'?' 63 '?' 63 '?'
0x80490b8 <msg+8>: 63 '?' 63 '?' 63 '?' 63 '?' 63 '?' 0
'\0'
(gdb) quit

Next Time

• A Bigger Example: Escape Sequence Project

• Machine Language

• Project 3

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

References

• Some figures and diagrams from IA-32 Intel
Architecture Software Developer's Manual, Vols 1-3

<http://developer.intel.com/design/Pentium4/manuals/>

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

