
CMSC 313 Computer Organization & Assembly Language Programming Fall 2003
Homework 2

Due: Tue 09/16/03, Section 0101 (Chang) & Section 0301 (Macneil)

Wed 09/17/03, Section 0201 (Patel & Bourner)

Instructions: For the following questions, show all of your work. It is not sufficient to
provide the answers.

Exercise 1. Convert the following decimal numbers to hexadecimal representations of
16-bit two’s complement numbers.

a. 798

b. 30142

c. -23456

d. -1024

Exercise 2. Convert the following 16-bit two’s complement numbers in hexadecimal rep-
resentation to decimal.

a. FFF016

b. 07FF16

c. 00A816

d. 800016

Exercise 3. Write the following decimal numbers in IEEE-754 single precision format.
Give your answers in binary.

a. 2.54

b. 2.71828

c. −74.6875

d. 64000

Exercise 4. Write the decimal equivalents for these IEEE-754 single precision floating
point numbers given in binary.

a. 0 10000011 01100000000000000000000

b. 1 10000011 00010000000000000000000

c. 1 10000000 00000000000000000000000

d. 0 00000001 11010000000000000000000



CMSC 313 Lecture 04

• Moore’s “Law”

• Evolution of the Pentium Chip
• IA-32 Basic Execution Environment

• IA-32 General Purpose Registers

• “Hello World” in Linux Assembly Language
• Addressing Modes
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Moore’s “Law”

• In the mid-1960’s, Intel Chairman of the Board 
Gordon Moore observed that “the number of 
transistors that would be incorporated on a silicon 
die would double every 18 months for the next 
several years.”

• His prediction has continued to hold true.
• Perhaps a self-fulfilling prophecy?

UMBC, CMSC313, Richard Chang <chang@umbc.edu>
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INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE

2.3. MOORE’S LAW AND IA-32 PROCESSOR GENERATIONS

In the mid-1960s, Intel Chairman of the Board Gordon Moore made an observation: “the
number of transistors that would be incorporated on a silicon die would double every 18 months
for the next several years”. Over the past three and half decades, this prediction has continued
to hold true that it is often referred to as “Moore's Law.”

The computing power and the complexity (or roughly, the number of transistors per processor)
of Intel architecture processors has grown, over the years, in close relation to Moore's law. By
taking advantage of new process technology and new micro-architecture designs, each new
generations of IA-32 processors have demonstrated frequency-scaling headroom and new
performance levels over the previous generation processors. The key features of the Intel
Pentium 4 processor and Pentium III processor with advanced transfer cache are shown in Table
2-1. Older generation of IA-32 processors, which do not employ on-die second-level cache, are
shown in Table 2-2. 

Table 2-1.  Key Features of contemporary IA-32 processors

NOTES:

1. The register size and external data bus size are given in bits.
2. First level cache is denoted using the abbreviation L1, 2nd level cache is denoted as L2.

3. Intel Pentium III and Pentium III Xeon processors, with advanced transfer cache and built on 0.18 micron
process technology, were introduced in October 1999.

Intel 
Processor

Date 
Intro-
duced

Micro-
architecture

Clock 
Frequency 

at Intro-
duction

Transis-
tors per 

Die

Register 
Sizes1

System 
Bus 

Bandwi
dth

Max. 
Extern. 
Addr. 
Space

On-die 
Caches2 

Pentium III 
processor3

1999 P6 700 MHz 28 M GP: 32 
FPU: 80 
MMX: 64

XMM: 128

Up to 
1.06 
GB/s

64 GB 32KB L1;
256KB L2

Pentium 4 
processor

2000 Intel 
NetBurst 

micro-
architecture

1.50 GHz 42 M GP: 32 
FPU: 80 
MMX: 64

XMM: 128

3.2 
GB/s

64 GB 12K µop 
Execution 

Trace 
Cache;
8KB L1;

256KB L2
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INTRODUCTION TO THE IA-32 INTEL ARCHITECTURE

NOTES:

1. The register size and external data bus size are given in bits. Note also that each 32-bit general-purpose
(GP) registers can be addressed as an 8- or a 16-bit data registers in all of the processors

2. Internal data paths that are 2 to 4 times wider than the external data bus for each processor.

2.4. THE P6 FAMILY MICRO-ARCHITECTURE

The Pentium Pro processor introduced a new micro-architecture for the Intel IA-32 processors,
commonly referred to as P6 processor microarchitecture. The P6 processor micro-architecture
was later enhanced with an on-die, 2nd level cache, called Advanced Transfer Cache. This
micro-architecture is a three-way superscalar, pipelined architecture. The term “three-way
superscalar” means that using parallel processing techniques, the processor is able on average
to decode, dispatch, and complete execution of (retire) three instructions per clock cycle. To
handle this level of instruction throughput, the P6 processor family use a decoupled, 12-stage
superpipeline that supports out-of-order instruction execution. Figure 2-1 shows a conceptual
view of the P6 processor micro-architecture pipeline with the Advanced Transfer Cache
enhancement. The micro-architecture pipeline is divided into four sections (the 1st level and 2nd
level caches, the front end, the out-of-order execution core, and the retire section). Instructions
and data are supplied to these units through the bus interface unit. 

Table 2-2.  Key Features of previous generations of IA-32 Processor 

Intel Processor Date 
Intro-
duced

Max. Clock 
Frequency 

at Intro-
duction

Transis
-tors 

per Die

Register 
Sizes1

Ext. 
Data 
Bus 
Size2

Max. 
Extern. 
Addr. 
Space

Caches 

8086 1978 8 MHz 29 K 16 GP 16 1 MB None

Intel 286 1982 12.5 MHz 134 K 16 GP 16 16 MB Note 3

Intel386 DX Processor 1985 20 MHz 275 K 32 GP 32 4 GB Note 3

Intel486 DX Processor 1989 25 MHz 1.2 M 32 GP
80 FPU

32 4 GB L1: 8KB

Pentium Processor 1993 60 MHz 3.1 M 32 GP
80 FPU

64 4 GB L1:16KB

Pentium Pro Processor 1995 200 MHz 5.5 M 32 GP
80 FPU

64 64 GB L1: 16KB
L2: 256KB 
or 512KB 

Pentium II Processor 1997 266 MHz 7 M 32 GP
80 FPU
64 MMX

64 64 GB L1: 32KB
L2: 256KB 
or 512KB

Pentium III Processor 1999 500 MHz 8.2 M 32 GP
80 FPU
64 MMX

128 
XMM

64 64 GB L1: 32KB
L2: 512KB
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BASIC EXECUTION ENVIRONMENT

Figure 3-1.  IA-32 Basic Execution Environment

0

232 -1

Eight 32-bit

32-bits

32-bits

General-Purpose Registers

Segment Registers

EFLAGS Register

EIP (Instruction Pointer Register)

Address Space*

*The address space can be

Six 16-bit
Registers

Registers

Eight 80-bit
Registers

Floating-Point
Data Registers

Eight 64-bit
Registers MMX Registers

flat or segmented. Using

XMM RegistersEight 128-bit
Registers

16-bits Control Register

16-bits Status Register

48-bits FPU Instruction Pointer Register

48-bits FPU Data (Operand) Pointer Register

FPU Registers

MMX Registers

SSE and SSE2 Registers

32-bits MXCSR Register

Opcode Register (11-bits)

Basic Program Execution Registers

16-bits Tag Register

the physical address
extension mechanism, a
physical address space of
236 -1 can be addressed.



3-10

BASIC EXECUTION ENVIRONMENT

3.4.2. Segment Registers

The segment registers (CS, DS, SS, ES, FS, and GS) hold 16-bit segment selectors. A segment
selector is a special pointer that identifies a segment in memory. To access a particular segment
in memory, the segment selector for that segment must be present in the appropriate segment
register.

When writing application code, programmers generally create segment selectors with assembler
directives and symbols. The assembler and other tools then create the actual segment selector
values associated with these directives and symbols. If writing system code, programmers may
need to create segment selectors directly. (A detailed description of the segment-selector data
structure is given in Chapter 3, Protected-Mode Memory Management, of the Intel Architecture
Software Developer’s Manual, Volume 3.) 

How segment registers are used depends on the type of memory management model that the
operating system or executive is using. When using the flat (unsegmented) memory model, the
segment registers are loaded with segment selectors that point to overlapping segments, each of
which begins at address 0 of the linear address space (as shown in Figure 3-5). These overlap-
ping segments then comprise the linear address space for the program. (Typically, two overlap-
ping segments are defined: one for code and another for data and stacks. The CS segment
register points to the code segment and all the other segment registers point to the data and stack
segment.)

When using the segmented memory model, each segment register is ordinarily loaded with a
different segment selector so that each segment register points to a different segment within the
linear address space (as shown in Figure 3-6). At any time, a program can thus access up to six
segments in the linear address space. To access a segment not pointed to by one of the segment
registers, a program must first load the segment selector for the segment to be accessed into a
segment register.

Figure 3-4.  Alternate General-Purpose Register Names
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BASIC EXECUTION ENVIRONMENT

• EIP (instruction pointer) register. The EIP register contains a 32-bit pointer to the next
instruction to be executed. 

3.4.1. General-Purpose Registers

The 32-bit general-purpose registers EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP are
provided for holding the following items:

• Operands for logical and arithmetic operations

• Operands for address calculations

• Memory pointers.

Although all of these registers are available for general storage of operands, results, and
pointers, caution should be used when referencing the ESP register. The ESP register holds the
stack pointer and as a general rule should not be used for any other purpose. 

Many instructions assign specific registers to hold operands. For example, string instructions
use the contents of the ECX, ESI, and EDI registers as operands. When using a segmented
memory model, some instructions assume that pointers in certain registers are relative to
specific segments. For instance, some instructions assume that a pointer in the EBX register
points to a memory location in the DS segment. 

The special uses of general-purpose registers by instructions are described in Chapter 5, Instruc-
tion Set Summary, in this volume and Chapter 3, Instruction Set Reference, in the Intel Architec-
ture Software Developer’s Manual, Volume 2. The following is a summary of these special uses:

• EAX—Accumulator for operands and results data.

• EBX—Pointer to data in the DS segment.

• ECX—Counter for string and loop operations.

• EDX—I/O pointer.

• ESI—Pointer to data in the segment pointed to by the DS register; source pointer for string
operations.9

• EDI—Pointer to data (or destination) in the segment pointed to by the ES register;
destination pointer for string operations.

• ESP—Stack pointer (in the SS segment).

• EBP—Pointer to data on the stack (in the SS segment).

As shown in Figure 3-4, the lower 16 bits of the general-purpose registers map directly to the
register set found in the 8086 and Intel 286 processors and can be referenced with the names
AX, BX, CX, DX, BP, SP, SI, and DI. Each of the lower two bytes of the EAX, EBX, ECX, and
EDX registers can be referenced by the names AH, BH, CH, and DH (high bytes) and AL, BL,
CL, and DL (low bytes).



“Hello World” in Linux Assembly

• Use your favorite UNIX editor (vi, emacs, pico, ...)

• Assemble using NASM on gl.umbc.edu
nasm -f elf hello.asm

• NASM documentation is on-line.

• Need to “load” the object file
ld hello.o

• Execute
a.out

• CMSC 121 Introduction to UNIX
UMBC, CMSC313, Richard Chang <chang@umbc.edu>



80x86 Addressing Modes
• We want to store the value 1734h.
• The value 1734h may be located in a register

or in memory.
• The location in memory might be specified

by the code, by a register, …
• Assembly language syntax for MOV

MOV DEST,  SOURCE



EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Register

MOV EAX, ECX

Data

Code

.

.

.

MOV…

1734

Addressing Modes



EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Register Indirect

MOV EAX, [ECX]

Data

Code

.

.

.

MOV…

08A94068

1734

Addressing Modes



EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Memory

MOV EAX, [08A94068]

MOV   EAX, [x]

Data

Code

.

.

.

08A94068
MOV…

1734

Addressing Modes

x



EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register from Immediate

MOV EAX, 1734

Data

Code

.

.

.

1734
MOV…

Addressing Modes



EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register Indirect from Immediate

MOV [EAX],  DWORD 1734

Data

Code

.

.

.

1734
MOV…08A94068

Addressing Modes



EAX
EBX
ECX
EDX
EBP
ESI
EDI
ESP

EIP

Register Indirect from Immediate

MOV [08A94068],  DWORD 1734

MOV   [x], DWORD 1734

Data

Code

.

.

.

1734

MOV…
08A94068

Addressing Modes

x



Notes on Addressing Modes
• More complicated addressing modes later:

MOV EAX, [ESI+4*ECX+12]

• Figures not drawn to scale. Constants 1734h
and 08A94068h take 4 bytes (little endian).

• Some addressing modes are not supported
by some operations.

• Labels represent addresses not contents of
memory.



toupper.asm

• Prompt for user input.

• Use Linux system call to get user input.

• Scan each character of user input and convert all 
lower case characters to upper case.

• How to:
work with 8-bit data

specify ASCII constant

compare values

loop control

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



Debugging Assembly Language Programs

• Cannot just put print statements everywhere.

• Use gdb to:
examine contents of registers

exmaine contents of memory

set breakpoints

single-step through program

• READ THE GDB SUMMARY ONLINE!

UMBC, CMSC313, Richard Chang <chang@umbc.edu>



gdb ommand Summary

Command Example Description

run   start program 

quit   quit out of gdb 

cont   continue execution after a break 

break [addr] break *_start+5 sets a breakpoint 

delete [n] delete 4 removes nth breakpoint 

delete   removes all breakpoints 

info break   lists all breakpoints 

stepi   execute next instruction 

stepi [n] stepi 4 execute next n instructions 

nexti   execute next instruction, stepping over function calls 

nexti [n] nexti 4 execute next n instructions, stepping over function calls 

where   show where execution halted 

disas [addr] disas _start disassemble instructions at given address

info registers   dump contents of all registers 

print/d [expr] print/d $ecx print expression in decimal 

print/x [expr] print/x $ecx print expression in hex 

print/t [expr] print/t $ecx print expression in binary 

x/NFU [addr] x/12xw &msg Examine contents of memory in given format 

display [expr] display $eax automatically print the expression each time the program is halted 

  display/i $eip print machine instruction each time the program is halted 

info display   show list of automatically displays 

undisplay [n] undisplay 1 remove an automatic display 



CMSC 313, Computer Organization & Assembly Language Programming Fall 2003

Project 1: Change in Character

Due: Tue 09/16/03, Section 0101 (Chang) & Section 0301 (Macneil)

Wed 09/17/03, Section 0201 (Patel & Bourner)

Objective

This project is a finger-warming exercise to make sure that everyone can compile an assembly language 
program, run it through the debugger and submit the requisite files using the systems in place for the 
programming projects.

Assignment

For this project, you must do the following:

1. Write an assembly language program that prompts the user for an input string and a replacement 
character. The program then replaces all occurrences of the digits 0-9 with the replacement 
character. A sample run of the program should look like:

Input String: Today’s date is August 23, 2003.
Replacement character: X
Output: Today’s date is August XX, XXXX.

If the user enters several characters instead of a single replacement character, you can ignore the 
extra ones and just use the first character entered as the replacement. A good starting point for your 
project is the program toupper.asm (shown in class) which converts lower case characters in the 
user’s input string to upper case. The source code is available on the GL file system at: 
/afs/umbc.edu/users/c/h/chang/pub/cs313/

2. Using the UNIX script command, record some sample runs of your program and a debugging 
session using gdb. In this session, you should fully exercise the debugger. You must set several 
breakpoints, single step through some instructions, use the automatic display function and examine 
the contents of memory before and after processing. The script command is initiated by typing 
script at the UNIX prompt. This puts you in a new UNIX shell which records every character 
typed or printed to the screen. You exit from this shell by typing exit at the UNIX prompt. A file 
named typescript is placed in the current directory. You must exit from the script command 
before submitting your project. Also, remember not to record yourself editing your programs — this 
makes the typescript file very large.

Turning in your program

Use the UNIX submit command on the GL system to turn in your project. You should submit two files: 
1) the modified assembly language program and 2) the typescript file of your debugging session. The class 
name for submit is cs313_0101, cs313_0201 or cs313_0301 depending on which section you attend. The 
name of the assignment name is proj1.  The UNIX command to do this should look something like:

submit cs313_0101 proj1 change.asm typescript

Notes

Additional help on running NASM, gdb and making system calls in Linux are available on the assembly 
language programming web page for this course: 

<http://www.csee.umbc.edu/~chang/cs313.f03/assembly.shtml>

Recall that the project policy states that programming assignments must be the result of individual 
effort. You are not allowed to work together. Also, your projects will be graded on five criteria: correctness, 
design, style, documentation and efficiency. So, it is not sufficient to turn in programs that assemble and run. 
Assembly language programming can be a messy affair — neatness counts.



Next Time

• Overview of i386 instruction set.

• Arithmetic instructions, logical instructions.

• EFLAGS register

UMBC, CMSC313, Richard Chang <chang@umbc.edu>


