CMSC 313 Lecture 03

e Multiple-byte data
 big-endian vs little-endian

< sign extension

e Multiplication and division
* Floating point formats
e Character Codes

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

[/ 4-5

Common Sizes for Data Types

» A byte is composed of 8 bits. Two nibbles make up a byte.

« Halfwords, words, doublewords, and quadwords are composed of
bytes as shown below:

Bit

Nibble

Byte

16-bit word (halfword)
32-bit word

64-bit word (double)

128-bit word (quad)

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring)/

Chapter 4: The Instruction Set Architecture \

0]

0110

10110000

11001001 01000110

10110100 00110101 10011001 01011000

01011000 01010101 10110000 11110011

11001110 11101110 01111000 00110101

01011000 01010101 10110000 11110011

11001110 11101110 01111000 00110101

00001011 10100110 11110010 11100110

10100100 01000100 10100101 01010001

Richard Chang
The term "word" is not standardized! Some people use it to mean 16-bit words, others 32-bit words.

Richard Chang
16-bit word

Richard Chang
32-bit word

[/ 4-6

Chapter 4: The Instruction Set Architecture \

Big-Endian and Little-Endian Formats

 In a byte-addressable machine, the smallest datum that can be
referenced in memory is the byte. Multi-byte words are stored as a
sequence of bytes, in which the address of the multi-byte word is
the same as the byte of the word that has the lowest address.

* When multi-byte words are used, two choices for the order in
which the bytes are stored in memory are: most significant byte at
lowest address, referred to as big-endian , or least significant byte
stored at lowest address, referred to as little-endian .

Byte
<>

: : | : :

by At (R S |

X Xx+1 x+2 x+3 Xx+3 x+2 x+1 X

Word address is x for both big-endian and little-endian formats.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring)/

Two’s Complement Sign Extension

Decimal 8-bit l16-bit
+5 0000 0101 0000 0000 0000 0101
-5 1111 1011 1111 1111 1111 1011

* Why does sign extension work?

-x is represented as 28 - x in 8-bit
-x is represented as 216 - x in 16-bit
28 -x +??7?= 216-x

??? = 216-28

1 0000 0000 0000 0000 = 65536
- 1 0000 0000 = 256
1111 1111 0000 0000 = 65280

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

/[3-14

8-bit result.
1
x 1
1101
1101
00O00O
1101 _
1 0001

\Principles of Computer Architecture by M. Murdocca and V. Heuring

Multiplication Example

« Multiplication of two 4-bit unsigned binary integers produces an

101 (13); Multiplicand M
011 (11)5 MultiplierQ

Partial products

111 (143),5 ProductP

» Multiplication of two 4-bit signed binary integers produces only a
7-bit result (each operand reduces to a sign bit and a 3-bit mag-
nitude for each operand, producing a sign-bit and a 6-bit result).

© 1999 M. Murdocca and V. Heuringjj

N

[3-20 Chapter 3: Arithmetic \
Multiplication of Signed Integers

» Sign extension to the target word size is needed for the negative
operand(s).

» A target word size of 8 bits is used here for two 4-bit signed op-
erands, but only a 7-bit target word size is needed for the result.

1111 (<Dy 11111111 (<1
x 0001 (+D X 0001 (+1)y
1111 11111111
0000 0000000
0000 000000
0000 00000
00001111 (+15y 11111111 (-1

(Incorrect; result should be —1)

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

[[3-17 Chapter 3: Arithmetic \
Example of Base 2 Division

 (7/3=2),,with a remainder R of 1.
 Equivalently, (0111/ 11 = 10) , with a remainder R of 1.

0010 R1

11(0111
11

01

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

/f 2-18

Chapter 2: Data Representation \

Base 10 Floating Point Numbers

 Floating point numbers allow very large and very small numbers
to be represented using only a few digits, at the expense of preci-
sion. The precision is primarily determined by the number of dig-
its in the fraction (or significand , which has integer and fractional

parts), and the range is primarily determined by the number of
digits in the exponent.

« Example (+6.023 x 10%3):

Position of decimal point

!

+ 2113]116].]0[|2]]3

Sign Exponent Significand
(two digits) (four digits)

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//

[2-19 Chapter 2: Data Representation \
Normalization

» The base 10 number 254 can be represented in floating point form
as 254 x 100, or equivalently as:

25.4 x 101, or
2.54 x 10%, or
254 x 103, or
.0254 x 104, or

Infinitely many other ways, which creates problems when making
comparisons, with so many representations of the same number.

* Floating point numbers are usually normalized , in which the radix
point is located in only one possible position for a given number.

« Usually, but not always, the normalized representation places the
radix point immediately to the left of the leftmost, nonzero digit in
the fraction, as in: .254 x 103

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//

Floating Point Example

« Represent .254 x 103 in a normalized base 8 floating point format
with a sign bit, followed by a 3-bit excess 4 exponent, followed by
four base 8 digits.

« Step #1: Convert to the target base.

254 x 103 = 254, ,. Using the remainder method, we find that 254
= 376 x 8°:

254/8 =31 R 6
31/8=3R7
3/8=0R 3
o Step #2: Normalize: 376 x 89 =.376 x 83,

« Step #3: Fill in the bit fields, with a positive sign (sign bit = 0), an
exponent of 3 + 4 = 7 (excess 4), and 4-digit fraction = .3760:

O 111 . 011 111 110 000

[2-20 Chapter 2: Data Representation \

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//

[2-21 Chapter 2: Data Representation \

Error, Range, and Precision

* In the previous example, we have the base b = 8, the number of

significant digits (not bits!) in the fraction S = 4, the largest expo-
nent value (not bit pattern) M = 3, and the smallest exponent value
m=-4,

* In the previous example, there is no explicit representation of O,
but there needs to be a special bit pattern reserved for O other-
wise there would be no way to represent O without violating the
normalization rule. We will assume a bit pattern of
O 000 000 000 000 000 represents 0.

e Using b, s, M, and m, we would like to characterize this floating
point representation in terms of the largest positive representable
number, the smallest (nonzero) positive representable number,
the smallest gap between two successive numbers, the largest
gap between two successive numbers, and the total number of
numbers that can be represented.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring)/

[[2-22

o Largest representable number: bMx (1 -bS) =83 x (1-8%)
« Smallest representable number: bMx p1=84-1=8>
 Largestgap: bMx ps=83-4=81

« Smallest gap: b x bS=84-4=88

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

Chapter 2: Data Representation \

Error, Range, and Precision (cont’)

[2-23 Chapter 2: Data Representation \

Error, Range, and Precision (cont’)
® © ®

2 x (M-m+1) x (b-1) x bsl + 1
L I I L1
Thenumber Firstdigit Remaining T

Sign bit of exponents of fraction digitsof Zero

fraction

 Number of representable numbers: There are 5 components: (A)
sign bit; for each number except O for this case, there is both a
positive and negative version; (B) (M- m) + 1 exponents; (C)b -1
values for the first digit (O is disallowed for the first normalized
digit); (D) b1 values for each of the s-1 remaining digits, plus (E)
a special representation for 0. For this example, the 5 components
resultin: 2 x ((3-4)+1)x(8-1) x8*%1+ 1 numbers that can be
represented. Notice this number must be no greater than the num-
ber of possible bit patterns that can be generated, which is 2 16,

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring)/

/ 2-24 Chapter 2: Data Representation \

Example Floating Point Format

AL AAa
-3 —1 —1 o) 1 1 3
2 2 4 4 2 2
1 1 b=2 M= +1
8 8 s=3 m= -2

« Smallest number is 1/8

e Largest number is 7/4

 Smallest gap is 1/32

e Largestgapis 1/4

 Number of representable numbers is 33.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

/[2-25
Gap Size Follows Exponent Size

* The relative error is approximately the same for all numbers.

* If we take the ratio of a large gap to a large number, and compare
that to the ratio of a small gap to a small number, then the ratios
are the same:

A large gap > pM-s b1
A large number > pM x (1—bs) 1—bs b1
A small gap > bm-s b

A small number > pmx (1-b) 1—bs b1

Chapter 2: Data Representation \

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//

[2-26 Chapter 2: Data Representation \

Conversion Example

« Example: Convert (9.375 x 10'2)10 to base 2 scientific notation

 Start by converting from base 10 floating point to base 10 fixed
point by moving the decimal point two positions to the left, which
corresponds to the -2 exponent: .09375.

* Next, convert from base 10 fixed point to base 2 fixed point:

09375 x 2 = 0.1875
1875 x 2 = 0.375
375 x 2 = 0.75
.75 x 2 = 15

D x 2 = 1.0

* Thus, (.09375) ,, = (.00011),.
 Finally, convert to normalized base 2 floating point:

.00011 =.00011 x20=1.1 x 24

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//

|IEEE-754 32-bit Floating Point Format

* sign bit, 8-bit exponent, 23-bit mantissa
e npormalized as 1.xxxxx
e leading 1is hidden

e 8-bit exponent in excess 127 format
<~ NOT excess 128

~0000 0000and 1111 1111 are reserved
e +0 and -0 is zero exponent and zero mantissa
« 1111 1111 exponent and zero mantissa is infinity

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

[(2-27

32 bits
|
Single , .
precision 8 bits 23 bits
/ Exponent Fraction
Sign
(1 bit) 64 bits
\I
Double , .
precision 11 bits 52 bits
Exponent Fraction

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

Chapter 2: Data Representation \

IEEE-754 Floating Point Formats

\Principles of Computer Architecture by M. Murdocca and V. Heuring

// 2-28 Chapter 2: Data Representation \
IEEE-754 Examples
Value Bit Pattern
Sign Exponent Fraction

(@ +1.101 x 2° 0 1000 0100 101 0000 0000 0000 0000 0000
(b) -1.01011 x 2-126 1 0000 0001 010 1100 0000 0000 0000 0000
(c) +1.0 x 2127 0 1111 1110 000 0000 0000 0000 0000 0000
(d) +0 0 0000 0000 000 0000 0000 0000 0000 0000
(e -0 1 0000 0000 000 0000 0000 0000 0000 0000
) +00 0 1111 1111 000 0000 0000 0000 0000 0000
(9) +2-128 0 0000 0000 010 0000 0000 0000 0000 0000
(h) +NaN 0 1111 1111 011 0111 0000 0000 0000 0000
(i) +2-128 0O 01101111111 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0000 0000 0000

© 1999 M. Murdocca and V. Heuringjj

[2-29 Chapter 2: Data Representation \

IEEE-754 Conversion Example

* Represent -12.625 4, in single precision IEEE-754 format.
« Step #1. Convert to target base. -12.625 ,,=-1100.101,
* Step #2: Normalize. -1100.101 , = -1.100101, x 23

« Step #3: Fill in bit fields. Sign is negative, so sign bit is 1. Expo-
nent is in excess 127 (not excess 128!), so exponent Is repre-
sented as the unsigned integer 3 + 127 = 130. Leading 1 of
significand is hidden, so final bit pattern is:

1 1000 0010 . 1001 0100 O0O00 0000 0000 000

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring//

[3-23 Chapter 3: Arithmetic

Floating Point Arithmetic

 Floating point arithmetic differs from integer arithmetic in that ex-
ponents must be handled as well as the magnitudes of the oper-
ands.

* The exponents of the operands must be made equal for addition
and subtraction. The fractions are then added or subtracted as ap-
propriate, and the result is normalized.

« Ex: Perform the floating point operation: (.101 x 23 + 111 x 24)2

» Start by adjusting the smaller exponent to be equal to the larger
exponent, and adjust the fraction accordingly. Thus we have .101
x 23 =.010 x 24, losing .001 x 23 of precision in the process.

 The resulting sum is (.010 + .111) x 24=1.001 x 24 =.1001 x 2°, and
rounding to three significant digits, .100 x 2°, and we have lost an-
other 0.001 x 2% in the rounding process.

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring)/

N

[3-24 Chapter 3: Arithmetic \

Floating Point Multiplication/Division

» Floating point multiplication/division are performed in a manner
similar to floating point addition/subtraction, except that the sign,
exponent, and fraction of the result can be computed separately.

* Like/unlike signs produce positive/negative results, respectively.
Exponent of result is obtained by adding exponents for multiplica-
tion, or by subtracting exponents for division. Fractions are multi-
plied or divided according to the operation, and then normalized.

« Ex: Perform the floating point operation: (+.110 x 2°) / (+.100 x 24),,

» The source operand signs are the same, which means that the re-
sult will have a positive sign. We subtract exponents for division,
and so the exponent of the resultis 5 -4 = 1.

* We divide fractions, producing the result: 110/100 = 1.10.

 Putting it all together, the result of dividing (+.110 x 2°) by (+.100 x
24) produces (+1.10 x 21). After normalization, the final result is
(+.110 x 22).

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring)/

/[2-31

 ASCIl is a 7-bit code, com-

ASCII Character Code

Chapter 2: Data Representation \

\Principles of Computer Architecture by M. Murdocca and V. Heuring

. . 00 NUL[10 DLE[20 SP [30 O [40 @ [50 P [60 - [70 p
monly stored in 8-bit 01 SOH|[11 DC1 |21 ! [3L 1 |41 A |51 Q |61 a |71 q
02 STX [12DC2|22 " |32 2 |42 B |52 R |62 b |72 r
bytes. 03 ETX |13 DC3 |23 # |33 3 |43 C |53 S |63 ¢c |73 s
04 EOT |14 DC4 |24 $ |34 4 |44 D |54 T |64 d |74 t
WAN 05 ENQ|15 NAK|25 % |35 5 |45 E [55 U |65 e |75 u
e “A"Isat 41l 16° To convert 06 ACK|16 SYN|26 & |36 6 |46 F |56 V |66 f |76 v
07 BEL |17 ETB |27 ' |37 7 |47 G |57 W |67 g |77 w
upper case letters to 08 BS |18 CAN|28 (|38 8 |48 H |58 X |68 h |78 x
09 HT |19 EM |29) |39 9 |49 | [59 Y |69 i |79 vy
lower case |e'['[el’S, add OALF |[1ASUB|2A * [3A : [4A J |5A Z |6A j |7A 2
s OBVT |IBESC|2B + [3B ; [4B K [5B [[6B k |7B {
20... Thus “a”’ is at 41 + OCFF |ICFS |[2C 3 < |4c L |[5C \ |6C | |7C |
16 16 ODCR |1DGS |2D - |30 = (4D M |5D | |6D m |7D }
20. . =01 OESO |1IERS |2E . [3E > |4 N |5E ~ |6E n |[7E =~
16 16° OFSI [1IFUS |2F / |3F 2 |4 O |5F _ |6F o |7F DEL
[1 ” .
e The character “5” at posi- NUL Nul FF Form feed CAN Cancel
. . . SOH Start of heading CR Carriagereturn EM End of medium
tion 35 1 Is different than STX Start of text SO Shift out SUB Substitute
6 ETX End of text Sl Shiftin ESC Escape
the number 5 TO convert EOT End of transmisson DLE Datalink escape FS File separator
h b . ENQ Enquiry DC1 Device control 1 GS Group separator
- ACK Acknowledge DC2 Device control 2 RS Record separator
c araCter numDbers Into BEL Bsdll DC3 Device control 3 US Unit separator
- - BS Backspace DC4 Device control 4 SP Space
number numbers’ SUb HT Horizontal tab NAK Negative acknowledge DEL Delete
. _ — LF Linefeed SYN Synchronousidlie
tract 30 16" 3516 30]_6 = 2. VT Vertica tab ETB End of transmission block

© 1999 M. Murdocca and V. Heuringjj

[2-32 Chapter 2: Data Representation \

00 NUL[20 DS [40 SP [60 — |80 AO co { [EO \
EBCDIC 01 SOH |21 SOS |41 61 / |8 a |Al ~ |C1 A |EL

02 STX |22 FS |42 62 82 b |[A2 s |C2 B |E2 S

03 ETX |23 43 63 83 ¢ [A3 t |C3 C |E3 T

h 04 PF |24 BYP |44 64 84 d |A4 u |C4 D |E4 U

C araCter 05 HT |25 LF |45 65 85 e |[A5 v |C5 E |E5 V

06 LC |26 ETB |46 66 86 f |A6 w |C6 F |E6 W

07 DEL |27 ESC |47 67 87 g |A7 x |C7T G |E7T X

COde 08 28 48 68 88 h |[A8 y |C8 H |E8 Y

09 29 49 69 89 i |A9 z |C9 | |E9 Z
0OA SMM|2A SM |4A ¢ |[6A * |8A AA CA EA
. i _hi 0B VT |2B CU2 |4B 6B , |8B AB CB EB
EBCDIC is an 8-bit OC FF | 2C AC < |6C % |8C AC cC EC
code. ODCR |2DENQ|4D (|[6D _ |8D AD CD ED
OE SO |2E ACK|4E + |6E > |8E AE CE EE
OF S |2FBEL |4F | |6F 2 |8F AF CF EF

10 DLE | 30 50 & |70 90 BO DO } |FO O

11 DC1 | 31 51 71 91 | |B1 DI J |F1 1

12 DC2 | 32 SYN|52 72 92 k |B2 D2 K |F2 2

13 TM | 33 53 73 93 | |B3 D3 L |F3 3

f o 14 RES |34 PN |54 74 94 m |B4 D4 M |F4 4

DELREUT BEMEmE R o(zoE 2N

acKkspace gl €C 0

SOH S 0 SM caMeds &117 IL |37 EOT |57 77 97 p |B7 D7 P |F7 7

ENQ Enquiry LC LowerCase ~ CU 18 CAN |38 58 78 9% q |BS D8 Q |F8 8

BYP Bypaes CR CoropsRean 17 19 EM | 39 59 79 9 r |B9 D9 R |F9 9

CAN Cancdl EM End of Medium EQ 1A CC | 3A 5A L [7TA : |9A BA DA FA |
Sl Shiftin TM Tape Mark NAIB CU1 3B CU3|5B $ |7B # |9B BB DB FB
20, Shift Out S P etor S ICIFS |3CDC4 (5C - |7C @ |9C BC DC FC
SUB Substitute HT Horizontal Tab IG 1D IGS | 3D NAK| 5D) 7 9D BD DD FD
N NewLine UC Ut 18 1E IRs |3E 5 : |7E = |9E BE DE FE
IF IUS |3F SUB |5F -~ |[7F " |9F BF DF FF

\Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuringjj

[/ 2-33

Unicode
Character
Code

» Unicode is a 16-
bit code.

Chapter 2: Data Representation \

0000 NUL | 0020 SP |0040 @ | 0060 0080 Ctrl | 00AO NBS|00CO A |00E0 a
0001 SOH | 0021 ! |(0041 A |0061 a |008L Citrl | 00AL1 00C1 A |O0E1 &
0002 STX (0022 " |0042 B |0062 b |0082 Ctrl [00A2 ¢ |00C2 A |OOE2 &
0003 ETX [0023 # |0043 C |0063 c |0083 Ctrl [00A3 £ |00C3 A |OOE3 &
0004 EOT |0024 $ |0044 D |0064 d |0084 Ctrl |00A4 © |00C4 A |O0OE4 &
0005 ENQ | 0025 % |0045 E |0065 e |0085 Ctrl |00A5 ¥ |00C5 A |00E5 &
0006 ACK| 0026 & |0046 F |0066 f |0086 Ctrl |00A6 T |00C6 A& |OOE6 @
0007 BEL (0027 ' |[0047 G |0067 g |0087 Ctrl |OOA7 § |00C7 C |OOE7 ¢
0008 BS |[0028 (|0048 H [0068 h [0088 Ctrl [00A8 " |[00C8 E |OOE8 &
0009 HT | 0029) |0049 | 0069 i 0089 Ctrl [00A9 © [00C9 E |[OOE9 é
OOOA LF |002A * |[O004A J | O006A j 008A Ctrl | 00AA 2 |00CA E |OOEA &
000B VT [002B + (004B K |006B k |008B Ctrl |0OOAB « |00CB E |OOEB &
000OC FF |002C ~ |004C L |006C | 008C Ctrl | 00AC -~ |00CC | 00EC i
OOODCR |002D - |004D M |006D m |008D Ctrl | 0OAD — |00CD i |OOED i
OO0E SO |002E . |O04E N |OO6E n |OOSE Ctrl |[0OAE ® |O00CE 1 |OOEE 1
000F Sl 002F / |004F O |006F o |OO08F Ctrl | OOAF — |OOCF | |OQOEF i
0010 DLE|0030 O |0050 P |0070 p |0090 Ctrl |00BO ° |00DO D |O0FO ¢
0011 DC1 |0031 1 |0051 Q |0071 qgq |0091 Ctrl [0OB1 + |00OD1 N |OOF1L n
0012 DC2 {0032 2 |0052 R [0072 r |0092 Ctrl [O0OB2 2 |00D2 O |OOF2 o
0013 DC3 ({0033 3 [0053 S |0073 s |0093 Ctrl [00B3 3 |00D3 O |O0OF3 6
0014 DC4 | 0034 4 |(0054 T |0074 t |0094 Ctrl |00B4 ~ ooD4 O |O0OF4 &
0015 NAK|0035 5 [0055 U [0075 u |0095 Ctrl [00B5 p |00D5 O |O0OF5 &
0016 SYN|0036 6 |0056 V |0076 v |009 Ctrl |00B6 § |00D6 O |OQOF6 O
0017 ETB | 0037 7 |0057 W |0077 w |0097 Ctrl |[00B7 00D7 x | OOF7 =
0018 CAN| 0038 8 |0058 X |0078 x |0098 Ctrl [0OB8 , |00D8 @ |O00F8 @
0019 EM [0039 9 [0059 Y |0079 y |0099 Ctrl [OOB9 * |00D9 U |OOF9 U
001A SUB [003A : |O005A Z |007A z |O09A Ctrl [OOBA ° |00DA U | OOFA G
001B ESC |[003B ; |[005B [|007B { |O09B Ctrl [0OOBB » |[00DB U |OOFB 0
00ICFS |003C < |[005C \ |007C | |009C Ctrl |0OBC /4 |00DC U |O0OFC
001D GS |003D = |005D] 007D } 009D Ctrl | 00BD /2 |00DD Y |OOFD b
001IE RS |003E > |O0O5E ~ |OO7E ~ |OO9E Ctrl | OOBE 3/4 |OODE y |OOFE p
001F US |003F ? |O005F _ | O007F DEL | O09F Ctrl | 0OBF ¢ |OODF g |OOFF
NUL Null SOH Start of heading CAN Cancel SP Space

STX Start of text EOT End of transmission EM Endof medium DEL Delete
ETX End of text DC1 Devicecontrol 1 SUB Substitute Ctrl Control
ENQ Enquiry DC2 Device control 2 ESC Escape FF Formfeed
ACK Acknowledge DC3 Device control 3 FS Fileseparator CR Carriagereturn
BEL Bdl DC4 Device control 4 GS Group separator SO Shift out
BS Backspace NAK Negative acknowledge RS Record separator Sl Shiftin

HT Horizontal tab NBS Non-breaking space US Unit separator DLE Datalink escape
LF Linefeed ETB End of transmission block SYN Synchronousidle VT Vertical tab

\Principles of Computer Architecture by M. Murdocca and V. Heuring

© 1999 M. Murdocca and V. Heuringjj

Next Time

e Basic Architecture of Intel Pentium Chip
e “"Hello World” in Linux Assembly
e Addressing Modes

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

