
CMSC 313 Lecture 01

• Course Overview
Prerequisites, Syllabus, Grading, Project Policy, etc.

• Levels of machines: from electrons to C++
• Machine Models: von Neumann vs. System Bus

• Fetch-Execute Cycle

• Laptop disassembly
• Review of base conversion

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Course Syllabus
We will follow two textbooks: Principles of Computer Architecture, by Murdocca and Heuring, and Linux

Assembly Language Programming, by Neveln. The following schedule outlines the material to be covered during the
semester and specifies the corresponding sections in each textbook.

CMSC 313, Computer Organization & Assembly Language Programming, Section 0101 Fall 2003

Date Topic M&H Neveln Assign Due
Th 08/28 Introduction & Overview 1.1-1.8 1.1-1.6
Tu 09/02 Data Representation I 2.1-2.2, 3.1-3.3 2.4-2.7, 3.6-3.8 hw1
Th 09/04 Data Representation II
Tu 09/09 i386 Assembly Language I 3.10-3.13, 4.1-4.8 hw2, proj1 hw1
Th 09/11 i386 Assembly Language II 6.1-6.5
Tu 09/16 i386 Assembly Language III proj2 hw2, proj1
Th 09/18 i386 Assembly Language IV
Tu 09/23 Examples proj3 proj2
Th 09/25 Machine Language 5.1-5.7
Tu 09/30 Compiling, Assembling & Linking 5.1-5.3
Th 10/02 Subroutines 7.1-7.4
Tu 10/07 The Stack & C Functions proj4 proj3
Th 10/09 Linux Memory Model 7.7 8.1-8.8
Tu 10/14 Interrupts & System Calls 9.1-9.8 proj4
Th 10/16 Midterm Exam
Tu 10/21 Introduction to Digital Logic A.1-A.2 3.1-3.3
Th 10/23 Transistors & Logic Gates A.3-A.4 hw3
Tu 10/28 In-class Lab I
Th 10/30 Boolean Functions & Truth Tables A.5-A.9 hw4 hw3
Tu 11/04 Circuits for Addition 3.5
Th 11/06 Circuit Simplification I B.1-B.2 hw5 hw4
Tu 11/11 Combinational Logic Components A.10
Th 11/13 Flip Flops A.11 digsim1 hw5
Tu 11/18 In-class Lab II
Th 11/20 Finite State Machines A.12-A.15
Tu 11/25 Circuit Simplification II B.3 digsim1
Th 11/27 Thanksgiving break
Tu 12/02 Finite State Machine Design digsim2
Th 12/04 More Finite State Machine Design
Tu 12/09 I/O & Memory 7.1-7.6, 8.1-8.3 digsim2
Tu 12/16 Final Exam 10:30am-12:30pm

CMSC 313, Computer Organization & Assembly Language Programming Fall 2003

Course Description
Instructor: Prof. Richard Chang
Office: ITE 326
Office Hours: Tue & Thu 11:30am–12:30pm
Telephone: 455-3093
Email: chang@umbc.edu

The TAs’ office hours will be announced at a later date.

Time and Place. Tuesday & Thursday 10:00am – 11:30am, ITE 237.

Textbooks.
• Principles of Computer Architecture, Murdocca and Heuring, Prentice-Hall, 2000.
• Linux Assembly Language Programming, Neveln, Prentice-Hall, 2000.

Course Web Page: <http://www.csee.umbc.edu/~chang/cs313.f03/>

Prerequisites. You should have mastered the material covered in the following courses: CMSC 202
Computer Science II and CMSC!203 Discrete Structures. In particular, we will assume that you have
had extensive programming experience in C/C++. Also, you must be familiar with and be able to
work with truth tables, Boolean algebra and modular arithmetic.

Objectives. The purpose of this course is to introduce computer science majors to computing systems
below that of a high-level programming language. The material covered can be broadly separated
into the categories of assembly language programming and computer organization. Under the
heading of assembly language programming students will be introduced to the i386 instruction set,
low-level programming, the Linux memory model, as well as the internal workings of compilers,
assemblers and linkers. Topics under computer organization include digital logic design
(combinational circuits, sequential circuits, finite state machines) and basic computer architecture
(system bus, memory hierarchy and input/output devices). A secondary goal of this course is to
prepare computer science majors for CMSC 411 Computer Architecture.

Grading. Your final grade will be based upon 5 homework assignments (20% total), 3 short
programming assignments (12% total), 1 long programming assignment (8%), 1 in-class lab
assignment (4%), 2 circuit simulation exercises (8% total), a midterm exam (24%) and a final exam
(24%). Your grade is given for work done during the semester; incomplete grades will only be given
for medical illness or other such dire circumstances.

Lecture Policy. You are expected to attend all lectures. You are responsible for all material covered
in the lecture as well as those in the assigned reading. However, this subject cannot be learned simply
by listening to the lectures and reading the book. In order to master the material, you need to spend
time outside the classroom on the programming assignments, simulation exercises and homework
assignments.

Due Dates. There will be homework or exercises due on most weeks. Homeworks are due at the
beginning of lecture. Exercises and projects turned in via online submissions are due 1 minute past
11:59pm of the due date. With one exception, late homework, exercises and programming
assignments will not be accepted — this is to allow for timely grading and discussion of the
solutions. The exception is that each student may submit one assignment (of any kind) up to one
week late during the semester.

Academic Integrity. You are allowed to discuss the homework assignments with other students.
However, exercises and projects must be completed by individual effort. Furthermore, you must write
up your homework independently. This means you should only have the textbooks and your own
notes in front of you when you write up your homework — not your friend's notes, your friend's
homework or other reference material. You should not have a copy of someone else's homework or
project under any circumstance. For example, you should not let someone turn in your homework.
Cases of academic dishonesty will be dealt with severely.

Exams. The exams will be closed-book and closed-notes. The date for the midterm exam is
Thursday, October 16. The final exam will cover the material from the second part of the course. The
date and time of the final exam is Tuesday, December 16, 10:30am to 12:30pm.

Advising Note. This course is a replacement for CMSC 211 Assembly Language Programming and
CMSC 311 Computer Organization which are no longer offered at UMBC. However, computer
science majors who take this class must also take CMSC 411 Computer Architecture to satisfy the
requirements of a BS degree in computer science. CMSC 313 by itself will not be sufficient for
graduation — even if you’ve taken CMSC 211 or CMSC 311 previously.

Policy on Programming Projects and Exercises
Critical programming skills cannot be learned by attending lecture. You should budget enough time to

work on the programming assignments as well. Please consult the time table given on the syllabus and plan
ahead. Programs are due by midnight (1 minute after 11:59pm) of the due date. Programs will be submitted
using the submit system running on the GL machines. Late assignments will not be accepted (with the
one exception noted in the course description). Programs will be graded on five criteria: correctness, design,
style, documentation and efficiency. So, turning in a project that merely “works” is not sufficient to receive
full credit.

For this course, programming projects must be developed using the NASM assembler for the Linux
operating system running on an Intel Pentium CPU. This arrangement is not compatible with other flavors
of UNIX, with Linux running on non-Intel CPUs or with assemblers for Windows 95/98/2k/ME/XP/NT.
When in doubt the UMBC machine linux.gl.umbc.edu will be the final arbiter of what constitutes a
working program. You may work on your own machines running Linux, but you will have to be your own
system administrator. None of the instructors, TA or support staff at OIT will be available to help you
install or debug Linux.

Cheating
Read this section carefully! It describes what constitutes cheating for this course. If you have

questions, ask the instructor. Ignorance will not be accepted as an excuse after the fact.
All programming assignments and circuit simulation exercises must be completed by your own

individual effort. You should never have a copy of someone else's program either on paper or electronically
under any circumstance. Also, you should never give a copy of your program or circuit, either on paper or
electronically, to another student. This also means that you cannot work on the programming assignments
or circuit simulation exercises together. Cases of academic dishonesty will be dealt with severely.
Egregious cases of cheating will be reported as a major infraction. In this case, you will not be allowed to
drop the course. Also, a major infraction would appear as a permanent part of your student record and
would be seen by potential employers when they ask for an official copy of your transcript.

 We will be using special software to check for cheating. The software is quite sophisticated, has been
tuned for assembly language programs and has surprised some students in the past. We will, of course, not
release the details of the internal workings of this cheat-checking software, but you are forewarned that
there is no difficulty in comparing every pair of submitted projects.

Finally, you are also warned that if your program is turned in by someone else, then, at a minimum,
both you and the person who copied your program will receive a 0 for that assignment. This includes
substantially similar programs. Furthermore, all parties concerned will have their prior programs checked
for cheating. So, if you cheat on the last assignment, you can lose all the points from all of your
assignments — even if you did all the work and just let other people copy from you.

CMSC 313, Computer Organization & Assembly Language Programming Fall 2003

Chapter 1: Introduction1-3

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Some Definitions
• Computer architecture deals with the functional behavior of a

computer system as viewed by a programmer (like the size of a
data type – 32 bits to an integer).

• Computer organization deals with structural relationships that are
not visible to the programmer (like clock frequency or the size of
the physical memory).

• There is a concept of levels in computer architecture. The basic
idea is that there are many levels at which a computer can be con-
sidered, from the highest level, where the user is running pro-
grams, to the lowest level, consisting of transistors and wires.

Chapter 1: Introduction1-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

High Level

High Level Languages

User Level: Application Programs

Low Level

Functional Units (Memory, ALU, etc.)

Logic Gates

Transistors and Wires

Assembly Language / Machine Code

Microprogrammed / Hardwired Control

Levels of Machines
• There are a number of levels in a computer (the exact number is

open to debate), from the user level down to the transistor level.

• Progressing from the top level downward, the levels become less
abstract as more of the internal structure of the computer be-
comes visible.

Richard Chang
Assembly Language / Machine Code

Richard Chang

Richard Chang
Logic Gates

Richard Chang

Computer Science View of the World

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

User
1

User
2

User
3

User
n

Application Programs

Operating System

Computer Hardware

 compiler assembler text editor database sys

...

Chapter 1: Introduction1-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Input Unit
Arithmetic
and Logic

Unit (ALU)
Output Unit

Memory
Unit

Control Unit

The von Neumann Model
• The von Neumann model consists of five major components:

(1) input unit; (2) output unit; (3) arithmetic logic unit; (4) memory
unit; (5) control unit.

Chapter 1: Introduction1-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Sy
st

em
 B

us

Data Bus

Address Bus

Control Bus

(ALU,
Registers,

and Control)

Memory Input and
Output (I/O)

CPU

The System Bus Model
• A refinement of the von Neumann model, the system bus model

has a CPU (ALU and control), memory, and an input/output unit.

• Communication among components is handled by a shared path-
way called the system bus , which is made up of the data bus, the
address bus, and the control bus. There is also a power bus, and
some architectures may also have a separate I/O bus.

Chapter 4: The Instruction Set Architecture4-9

© 1999 M. Murdocca and V. HeuringPrinciples of Computer Architecture by M. Murdocca and V. Heuring

The Fetch-Execute Cycle

• The steps that the control unit carries out in executing a program
are:

(1) Fetch the next instruction to be executed from memory.

(2) Decode the opcode.

(3) Read operand(s) from main memory, if any.

(4) Execute the instruction and store results.

(5) Go to step 1.

This is known as the fetch-execute cycle .

Chapter 1: Introduction1-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Monitor

CD-ROM drive

Hard disk drive

Keyboard

Sockets for
internal memory

CPU (Microprocessor
beneath heat sink)

Sockets for plug-in
expansion cards

Diskette drive

A Typical Computer System

Chapter 1: Introduction1-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Memory

Input / output

Battery

Plug-in expansion card slots

Power supply
connector

Pentium II processor slot
(ALU/control)

The Motherboard
• The five von Neumann components are visible in this example

motherboard, in the context of the system bus model.

(Source: TYAN Computer,
http://www.tyan.com)

Mac Systems: Apple: Macintosh PowerBook: PowerBook 165
Specs | Ports

The Apple Macintosh PowerBook 165
features a ??? MHz 68030 processor, 4 MB
of RAM, and either an 80 MB or a 160 MB
hard drive in a compact portable case with a
9.8" grayscale passive-matrix display.
Although the built-in display of the
PowerBook 165 only supports 4-bit
grayscale, it supports 8-bit color on an
external monitor.

Introduction Date: August 16, 1993 Discontinued Date: July 18, 1994

Processor Type: 68030 Processor Speed: ??? MHz

Processor Upgrade: N/A FPU: N/A

System Bus Speed: ??? MHz Lookaside Bus Speed: N/A

ROM Size: 1 MB Data Path: 32-bit

Level 1 Cache: 0.5k Level 2 Cache: N/A

RAM Type: 85 ns DRAM card 1. VRAM Type: Built-in

Standard RAM: 4 MB Maximum RAM: 14 MB

Motherboard RAM: 4 MB RAM Slots: 1 (PB 100 series)

Standard VRAM: 512k 2. Maximum VRAM: 512k 2.

Standard Hard Drive: 80 MB, 160 MB Int. Hard Drive Type: SCSI

Standard CD-ROM: N/A Standard Disk: 1.44 MB (manual)

Standard Modem: N/A Standard Ethernet: N/A

Case Type: Portable (Med. Gray) Form Factor: Mac PowerBook 140

Exp. Slots: Modem Exp. Bays (Free): None

Battery Type: PB 100 Series NiCad Battery Life: 2.5-3.0 hours

Built-in Display: 9.8" Grayscale 3. Supported MacOS: 7.1-7.5.1, 7.5.3-
7.6.1

Dimensions: 2.25 x 11.25 x 9.3
4.

Avg. Weight: 6.8 lbs.

Original Price: $1970, $2250 US Est. Current Price: $50-$70 US

Notes:

1. Can also use 100 ns PSRAM cards, but performance will suffer.
2. 512k of VRAM supports an external color monitor (8-bit, 256
colors).

08/28/03 9:07 AMApple Macintosh PowerBook 165 Specs @ EveryMac.com

Page 1 of 2file://localhost/Users/chang/Courses/cs313/cs313-2003-09/lectures/lec01/PB165c/index.html

3. 9.8" Grayscale passive-matrix (4-bit, 16 grays) supertwist LCD.
4. In inches, height x width x depth (while closed).
5. Photo Credit: Apple Computer, Inc.

Home: Mac Systems: By Manufacturer: Apple: PowerBook (Series): PowerBook 165 Specs | Ports

Navigation Menu

EveryMac.com is provided "as is" without warranty of any kind whatsoever. EveryMac.com, and the author
thereof, shall not be held responsible or liable, under any circumstances, for any damages resulting from the
use or inability to use the information within. For complete disclaimer and copyright information please read
and understand the Terms of Use and the Privacy Policy before using EveryMac.com.

Copyright © 1996-2001 - Brock Kyle - EveryMac.com - Kyle Media - Advertising Info - All Rights Reserved.

08/28/03 9:07 AMApple Macintosh PowerBook 165 Specs @ EveryMac.com

Page 2 of 2file://localhost/Users/chang/Courses/cs313/cs313-2003-09/lectures/lec01/PB165c/index.html

Converting Base 6 to Base 10

• 123.456 = ???.???10

1236 = 1 x 3610 + 2 x 610 + 3 x 110 = 5110

0.456 = 4 x 1/610 + 5 x 1/3610 = 0.805555...10

123.456 = 51.805555...10

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Converting Base 10 to Base 6

• 754.9410 = 3254.5 35012 35012 35012...6
75410 = 116 x 2446 + 56 x 146 + 46 x 16 = ???6

754 ÷ 6 = 125 remainder 4

125 ÷ 6 = 20 remainder 5

 20 ÷ 6 = 3 remainder 2

 3 ÷ 6 = 0 remainder 3

32546 = 3 x 21610 + 2 x 3610 + 5 x 610 + 4 x 1 = 75410

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Richard Chang

Converting Base 10 to Base 6 (cont)

• 0.9410 = ???.???6

0.94 x 6 = 5.64 --> 5

0.64 x 6 = 3.84 --> 3

0.84 x 6 = 5.04 --> 5

0.04 x 6 = 0.24 --> 0

0.24 x 6 = 1.44 --> 1

0.44 x 6 = 2.64 --> 2

0.64 x 6 = 3.84 --> 3

0.9410 = 0.5 35012 35012 35012...6

5/6 + 3/36 + 5/216 + 0 + 1/65 + 2/66 = 0.939986282...10
UMBC, CMSC313, Richard Chang <chang@umbc.edu>

Chapter 2: Data Representation2-5

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Base Conversion with the Remainder
Method

• Example: Convert 23.375 10 to base 2. Start by converting the inte-
ger portion:

23/2	 =	 11	 R 1

11/2	 =	 5	 R 1

5/2	 =	 2	 R 1

2/2	 =	 1	 R 0

1/2	 =	 0	 R 1

Integer Remainder

Least significant bit

Most significant bit

(23)10 = (10111)2

Chapter 2: Data Representation2-6

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Base Conversion with the Multiplica-
tion Method

• Now, convert the fraction:

.375	 ×	 2	 =	 0.75

.75	 ×	 2	 =	 1.50

.5	 ×	 2	 =	 1.00

Least significant bit

Most significant bit

(.375)10 = (.011)2

• Putting it all together, 23.375 10 = 10111.0112.

Chapter 2: Data Representation2-7

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Nonterminating Base 2 Fraction
• We can’t always convert a terminating base 10 fraction into an

equivalent terminating base 2 fraction:

.2

.4

.8

.6

.2

.

.

.

0.4

0.8

1.6

1.2

0.4

=

=

=

=

=

2

2

2

2

2

×

×

×

×

×

Chapter 2: Data Representation2-8

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

Base 2, 8, 10, 16 Number Systems

• Example: Show a column for ternary (base 3). As an extension of
that, convert 14 10 to base 3, using 3 as the divisor for the remain-
der method (instead of 2). Result is 112 3

Binary
(base 2)

0
1

10
11

100
101
110
111

1000
1001
1010
1011
1100
1101
1110
1111

Octal
(base 8)

0
1
2
3
4
5
6
7

10
11
12
13
14
15
16
17

Decimal
(base 10)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Hexadecimal
(base 16)

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Chapter 2: Data Representation2-9

Principles of Computer Architecture by M. Murdocca and V. Heuring © 1999 M. Murdocca and V. Heuring

More on Base Conversions
• Converting among power-of-2 bases is particularly simple:

10112 = (102)(112) = 234

234 = (24)(34) = (102)(112) = 10112

1010102 = (1012)(0102) = 528

011011012 = (01102)(11012) = 6D16

• How many bits should be used for each base 4, 8, etc. , digit? For
base 2, in which 2 = 2 1, the exponent is 1 and so one bit is used
for each base 2 digit. For base 4, in which 4 = 2 2, the exponent is
2, so so two bits are used for each base 4 digit. Likewise, for base
8 and base 16, 8 = 2 3 and 16 = 24, and so 3 bits and 4 bits are used
for base 8 and base 16 digits, respectively.

Next Time

• Representing negative numbers
Signed magnitude

Two’s complement

One’s complement

Excess

• Modulo Arithmetic & Two’s Complement

UMBC, CMSC313, Richard Chang <chang@umbc.edu>

