
CMSC 313, Computer Organization & Assembly Language Programming Section 0101
Fall 2002

Project 3: Long Multiplication

Due: Thursday October 10, 2002

Objective
The objective of this project is to gain experience writing more complex assembly language programs.

Assignment
Write an assembly language program that takes two arbitrarily long strings from the user. These strings

should be interpreted as unsigned hexadecimal numbers. Your program must then multiply these two
numbers and output the product as a hexadecimal number. The algorithm you should follow to do this
multiplication is the same long multiplication algorithm you learned in elementary school.

Implementation Issues:
1. You will find the code to read in and convert two arbitrarily long hexadecimal numbers in:

/afs/umbc.edu/users/c/h/chang/pub/cs313/readhex.asm
There’s also code for printing out long binary numbers.

2. Although your code must essentially work for input numbers of any size, you are allowed to limit the
user’s inputs to 64 digit hexadecimal numbers. This is so we do not have to deal with memory allocation
issues, but nevertheless your program should be able to handle more digits by changing the definition of
a single constant.

3. It is OK to multiply the numbers byte by byte instead of 32-bit word by 32-bit word.
4. Numbers must be stored in little-endian format.
5. You will find the ADC (add with carry) instruction useful.
6. Remember that IMUL is for signed numbers, so you must use MUL instead of IMUL.
7. The syntax for a MUL instruction to multiply the AL register with a memory location is something like:

MUL byte [esi]
The AL register is implicit and must not be specified.

8. You may assume that multiplying an n-byte number with an m-byte number results in an (n+m)-byte
product.

9. You will need to carefully plan what information is stored in which registers and what information is
stored in memory.

10. Complex addressing modes such as [esi + ecx] will come in handy.
11. You can check your result using dc the “desktop calculator”. Type in 16 o 16 i to put the program

in hexadecimal mode. Note that dc uses Reverse Polish Notation, so adding 5 to 3 is accomplished by
5!3!+!p. The final p prints out the result to the screen. Type man dc to obtain full documentation on
dc.

Turning in your program
Use the UNIX script command to record some sample runs of your program. Your sample runs should

thoroughly exercise your program using inputs that are long enough and complex enough to demonstrate
that your program handles multiple word multiplication correctly.

You should submit two files: 1) your assembly language program and 2) a typescript file of your sample
runs. The class name for submit is ‘cs313-0101’ and the assignment name is ‘proj3’. The UNIX command
to do this should look something like:

submit cs313-0101 proj3 multiply.asm typescript

