/* * Copyright (c) 1996-1997 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ #ifndef __SGI_STL_INTERNAL_ALLOC_H #define __SGI_STL_INTERNAL_ALLOC_H #ifdef __SUNPRO_CC # define __PRIVATE public // Extra access restrictions prevent us from really making some things // private. #else # define __PRIVATE private #endif #ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG # define __USE_MALLOC #endif // This implements some standard node allocators. These are // NOT the same as the allocators in the C++ draft standard or in // in the original STL. They do not encapsulate different pointer // types; indeed we assume that there is only one pointer type. // The allocation primitives are intended to allocate individual objects, // not larger arenas as with the original STL allocators. #if 0 # include # define __THROW_BAD_ALLOC throw bad_alloc() #elif !defined(__THROW_BAD_ALLOC) # include # define __THROW_BAD_ALLOC cerr << "out of memory" << endl; exit(1) #endif #ifdef __STL_WIN32THREADS # include #endif #include #include #include #include #ifndef __RESTRICT # define __RESTRICT #endif #if !defined(_PTHREADS) && !defined(_NOTHREADS) \ && !defined(__STL_SGI_THREADS) && !defined(__STL_WIN32THREADS) # define _NOTHREADS #endif # ifdef _PTHREADS // POSIX Threads // This is dubious, since this is likely to be a high contention // lock. Performance may not be adequate. # include # define __NODE_ALLOCATOR_LOCK \ if (threads) pthread_mutex_lock(&_S_node_allocator_lock) # define __NODE_ALLOCATOR_UNLOCK \ if (threads) pthread_mutex_unlock(&_S_node_allocator_lock) # define __NODE_ALLOCATOR_THREADS true # define __VOLATILE volatile // Needed at -O3 on SGI # endif # ifdef __STL_WIN32THREADS // The lock needs to be initialized by constructing an allocator // objects of the right type. We do that here explicitly for alloc. # define __NODE_ALLOCATOR_LOCK \ EnterCriticalSection(&_S_node_allocator_lock) # define __NODE_ALLOCATOR_UNLOCK \ LeaveCriticalSection(&_S_node_allocator_lock) # define __NODE_ALLOCATOR_THREADS true # define __VOLATILE volatile // may not be needed # endif /* WIN32THREADS */ # ifdef __STL_SGI_THREADS // This should work without threads, with sproc threads, or with // pthreads. It is suboptimal in all cases. // It is unlikely to even compile on nonSGI machines. extern "C" { extern int __us_rsthread_malloc; } // The above is copied from malloc.h. Including // would be cleaner but fails with certain levels of standard // conformance. # define __NODE_ALLOCATOR_LOCK if (threads && __us_rsthread_malloc) \ { _S_lock(&_S_node_allocator_lock); } # define __NODE_ALLOCATOR_UNLOCK if (threads && __us_rsthread_malloc) \ { _S_unlock(&_S_node_allocator_lock); } # define __NODE_ALLOCATOR_THREADS true # define __VOLATILE volatile // Needed at -O3 on SGI # endif # ifdef _NOTHREADS // Thread-unsafe # define __NODE_ALLOCATOR_LOCK # define __NODE_ALLOCATOR_UNLOCK # define __NODE_ALLOCATOR_THREADS false # define __VOLATILE # endif __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma set woff 1174 #endif // Malloc-based allocator. Typically slower than default alloc below. // Typically thread-safe and more storage efficient. #ifdef __STL_STATIC_TEMPLATE_MEMBER_BUG # ifdef __DECLARE_GLOBALS_HERE void (* __malloc_alloc_oom_handler)() = 0; // g++ 2.7.2 does not handle static template data members. # else extern void (* __malloc_alloc_oom_handler)(); # endif #endif template class __malloc_alloc_template { private: static void* _S_oom_malloc(size_t); static void* _S_oom_realloc(void*, size_t); #ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG static void (* __malloc_alloc_oom_handler)(); #endif public: static void* allocate(size_t __n) { void* __result = malloc(__n); if (0 == __result) __result = _S_oom_malloc(__n); return __result; } static void deallocate(void* __p, size_t /* __n */) { free(__p); } static void* reallocate(void* __p, size_t /* old_sz */, size_t __new_sz) { void* __result = realloc(__p, __new_sz); if (0 == __result) __result = _S_oom_realloc(__p, __new_sz); return __result; } static void (* __set_malloc_handler(void (*__f)()))() { void (* __old)() = __malloc_alloc_oom_handler; __malloc_alloc_oom_handler = __f; return(__old); } }; // malloc_alloc out-of-memory handling #ifndef __STL_STATIC_TEMPLATE_MEMBER_BUG template void (* __malloc_alloc_template<__inst>::__malloc_alloc_oom_handler)() = 0; #endif template void* __malloc_alloc_template<__inst>::_S_oom_malloc(size_t __n) { void (* __my_malloc_handler)(); void* __result; for (;;) { __my_malloc_handler = __malloc_alloc_oom_handler; if (0 == __my_malloc_handler) { __THROW_BAD_ALLOC; } (*__my_malloc_handler)(); __result = malloc(__n); if (__result) return(__result); } } template void* __malloc_alloc_template<__inst>::_S_oom_realloc(void* __p, size_t __n) { void (* __my_malloc_handler)(); void* __result; for (;;) { __my_malloc_handler = __malloc_alloc_oom_handler; if (0 == __my_malloc_handler) { __THROW_BAD_ALLOC; } (*__my_malloc_handler)(); __result = realloc(__p, __n); if (__result) return(__result); } } typedef __malloc_alloc_template<0> malloc_alloc; template class simple_alloc { public: static _Tp* allocate(size_t __n) { return 0 == __n ? 0 : (_Tp*) _Alloc::allocate(__n * sizeof (_Tp)); } static _Tp* allocate(void) { return (_Tp*) _Alloc::allocate(sizeof (_Tp)); } static void deallocate(_Tp* __p, size_t __n) { if (0 != __n) _Alloc::deallocate(__p, __n * sizeof (_Tp)); } static void deallocate(_Tp* __p) { _Alloc::deallocate(__p, sizeof (_Tp)); } }; // Allocator adaptor to check size arguments for debugging. // Reports errors using assert. Checking can be disabled with // NDEBUG, but it's far better to just use the underlying allocator // instead when no checking is desired. // There is some evidence that this can confuse Purify. template class debug_alloc { private: enum {_S_extra = 8}; // Size of space used to store size. Note // that this must be large enough to preserve // alignment. public: static void* allocate(size_t __n) { char* __result = (char*)_Alloc::allocate(__n + _S_extra); *(size_t*)__result = __n; return __result + _S_extra; } static void deallocate(void* __p, size_t __n) { char* __real_p = (char*)__p - _S_extra; assert(*(size_t*)__real_p == __n); _Alloc::deallocate(__real_p, __n + _S_extra); } static void* reallocate(void* __p, size_t __old_sz, size_t __new_sz) { char* __real_p = (char*)__p - _S_extra; assert(*(size_t*)__real_p == __old_sz); char* __result = (char*) _Alloc::reallocate(__real_p, __old_sz + _S_extra, __new_sz + _S_extra); *(size_t*)__result = __new_sz; return __result + _S_extra; } }; # ifdef __USE_MALLOC typedef malloc_alloc alloc; typedef malloc_alloc single_client_alloc; # else // Default node allocator. // With a reasonable compiler, this should be roughly as fast as the // original STL class-specific allocators, but with less fragmentation. // Default_alloc_template parameters are experimental and MAY // DISAPPEAR in the future. Clients should just use alloc for now. // // Important implementation properties: // 1. If the client request an object of size > _MAX_BYTES, the resulting // object will be obtained directly from malloc. // 2. In all other cases, we allocate an object of size exactly // _S_round_up(requested_size). Thus the client has enough size // information that we can return the object to the proper free list // without permanently losing part of the object. // // The first template parameter specifies whether more than one thread // may use this allocator. It is safe to allocate an object from // one instance of a default_alloc and deallocate it with another // one. This effectively transfers its ownership to the second one. // This may have undesirable effects on reference locality. // The second parameter is unreferenced and serves only to allow the // creation of multiple default_alloc instances. // Node that containers built on different allocator instances have // different types, limiting the utility of this approach. #ifdef __SUNPRO_CC // breaks if we make these template class members: enum {_ALIGN = 8}; enum {_MAX_BYTES = 128}; enum {_NFREELISTS = _MAX_BYTES/_ALIGN}; #endif template class __default_alloc_template { private: // Really we should use static const int x = N // instead of enum { x = N }, but few compilers accept the former. # ifndef __SUNPRO_CC enum {_ALIGN = 8}; enum {_MAX_BYTES = 128}; enum {_NFREELISTS = _MAX_BYTES/_ALIGN}; # endif static size_t _S_round_up(size_t __bytes) { return (((__bytes) + _ALIGN-1) & ~(_ALIGN - 1)); } __PRIVATE: union _Obj { union _Obj* _M_free_list_link; char _M_client_data[1]; /* The client sees this. */ }; private: # ifdef __SUNPRO_CC static _Obj* __VOLATILE _S_free_list[]; // Specifying a size results in duplicate def for 4.1 # else static _Obj* __VOLATILE _S_free_list[_NFREELISTS]; # endif static size_t _S_freelist_index(size_t __bytes) { return (((__bytes) + _ALIGN-1)/_ALIGN - 1); } // Returns an object of size __n, and optionally adds to size __n free list. static void* _S_refill(size_t __n); // Allocates a chunk for nobjs of size size. nobjs may be reduced // if it is inconvenient to allocate the requested number. static char* _S_chunk_alloc(size_t __size, int& __nobjs); // Chunk allocation state. static char* _S_start_free; static char* _S_end_free; static size_t _S_heap_size; # ifdef __STL_SGI_THREADS static volatile unsigned long _S_node_allocator_lock; static void _S_lock(volatile unsigned long*); static inline void _S_unlock(volatile unsigned long*); # endif # ifdef _PTHREADS static pthread_mutex_t _S_node_allocator_lock; # endif # ifdef __STL_WIN32THREADS static CRITICAL_SECTION _S_node_allocator_lock; static bool _S_node_allocator_lock_initialized; public: __default_alloc_template() { // This assumes the first constructor is called before threads // are started. if (!_S_node_allocator_lock_initialized) { InitializeCriticalSection(&_S_node_allocator_lock); _S_node_allocator_lock_initialized = true; } } private: # endif class _Lock { public: _Lock() { __NODE_ALLOCATOR_LOCK; } ~_Lock() { __NODE_ALLOCATOR_UNLOCK; } }; friend class _Lock; public: /* __n must be > 0 */ static void* allocate(size_t __n) { _Obj* __VOLATILE* __my_free_list; _Obj* __RESTRICT __result; if (__n > (size_t) _MAX_BYTES) { return(malloc_alloc::allocate(__n)); } __my_free_list = _S_free_list + _S_freelist_index(__n); // Acquire the lock here with a constructor call. // This ensures that it is released in exit or during stack // unwinding. # ifndef _NOTHREADS /*REFERENCED*/ _Lock __lock_instance; # endif __result = *__my_free_list; if (__result == 0) { void* __r = _S_refill(_S_round_up(__n)); return __r; } *__my_free_list = __result -> _M_free_list_link; return (__result); }; /* __p may not be 0 */ static void deallocate(void* __p, size_t __n) { _Obj* __q = (_Obj*)__p; _Obj* __VOLATILE* __my_free_list; if (__n > (size_t) _MAX_BYTES) { malloc_alloc::deallocate(__p, __n); return; } __my_free_list = _S_free_list + _S_freelist_index(__n); // acquire lock # ifndef _NOTHREADS /*REFERENCED*/ _Lock __lock_instance; # endif /* _NOTHREADS */ __q -> _M_free_list_link = *__my_free_list; *__my_free_list = __q; // lock is released here } static void* reallocate(void* __p, size_t __old_sz, size_t __new_sz); } ; typedef __default_alloc_template<__NODE_ALLOCATOR_THREADS, 0> alloc; typedef __default_alloc_template single_client_alloc; /* We allocate memory in large chunks in order to avoid fragmenting */ /* the malloc heap too much. */ /* We assume that size is properly aligned. */ /* We hold the allocation lock. */ template char* __default_alloc_template<__threads, __inst>::_S_chunk_alloc(size_t __size, int& __nobjs) { char* __result; size_t __total_bytes = __size * __nobjs; size_t __bytes_left = _S_end_free - _S_start_free; if (__bytes_left >= __total_bytes) { __result = _S_start_free; _S_start_free += __total_bytes; return(__result); } else if (__bytes_left >= __size) { __nobjs = (int)(__bytes_left/__size); __total_bytes = __size * __nobjs; __result = _S_start_free; _S_start_free += __total_bytes; return(__result); } else { size_t __bytes_to_get = 2 * __total_bytes + _S_round_up(_S_heap_size >> 4); // Try to make use of the left-over piece. if (__bytes_left > 0) { _Obj* __VOLATILE* __my_free_list = _S_free_list + _S_freelist_index(__bytes_left); ((_Obj*)_S_start_free) -> _M_free_list_link = *__my_free_list; *__my_free_list = (_Obj*)_S_start_free; } _S_start_free = (char*)malloc(__bytes_to_get); if (0 == _S_start_free) { size_t __i; _Obj* __VOLATILE* __my_free_list; _Obj* __p; // Try to make do with what we have. That can't // hurt. We do not try smaller requests, since that tends // to result in disaster on multi-process machines. for (__i = __size; __i <= _MAX_BYTES; __i += _ALIGN) { __my_free_list = _S_free_list + _S_freelist_index(__i); __p = *__my_free_list; if (0 != __p) { *__my_free_list = __p -> _M_free_list_link; _S_start_free = (char*)__p; _S_end_free = _S_start_free + __i; return(_S_chunk_alloc(__size, __nobjs)); // Any leftover piece will eventually make it to the // right free list. } } _S_end_free = 0; // In case of exception. _S_start_free = (char*)malloc_alloc::allocate(__bytes_to_get); // This should either throw an // exception or remedy the situation. Thus we assume it // succeeded. } _S_heap_size += __bytes_to_get; _S_end_free = _S_start_free + __bytes_to_get; return(_S_chunk_alloc(__size, __nobjs)); } } /* Returns an object of size __n, and optionally adds to size __n free list.*/ /* We assume that __n is properly aligned. */ /* We hold the allocation lock. */ template void* __default_alloc_template<__threads, __inst>::_S_refill(size_t __n) { int __nobjs = 20; char* __chunk = _S_chunk_alloc(__n, __nobjs); _Obj* __VOLATILE* __my_free_list; _Obj* __result; _Obj* __current_obj; _Obj* __next_obj; int __i; if (1 == __nobjs) return(__chunk); __my_free_list = _S_free_list + _S_freelist_index(__n); /* Build free list in chunk */ __result = (_Obj*)__chunk; *__my_free_list = __next_obj = (_Obj*)(__chunk + __n); for (__i = 1; ; __i++) { __current_obj = __next_obj; __next_obj = (_Obj*)((char*)__next_obj + __n); if (__nobjs - 1 == __i) { __current_obj -> _M_free_list_link = 0; break; } else { __current_obj -> _M_free_list_link = __next_obj; } } return(__result); } template void* __default_alloc_template::reallocate(void* __p, size_t __old_sz, size_t __new_sz) { void* __result; size_t __copy_sz; if (__old_sz > (size_t) _MAX_BYTES && __new_sz > (size_t) _MAX_BYTES) { return(realloc(__p, __new_sz)); } if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) return(__p); __result = allocate(__new_sz); __copy_sz = __new_sz > __old_sz? __old_sz : __new_sz; memcpy(__result, __p, __copy_sz); deallocate(__p, __old_sz); return(__result); } #ifdef _PTHREADS template pthread_mutex_t __default_alloc_template<__threads, __inst>::_S_node_allocator_lock = PTHREAD_MUTEX_INITIALIZER; #endif #ifdef __STL_WIN32THREADS template CRITICAL_SECTION __default_alloc_template<__threads, __inst>:: _S_node_allocator_lock; template bool __default_alloc_template<__threads, __inst>:: _S_node_allocator_lock_initialized = false; #endif #ifdef __STL_SGI_THREADS __STL_END_NAMESPACE #include #include /* XXX should use */ __STL_BEGIN_NAMESPACE // Somewhat generic lock implementations. We need only test-and-set // and some way to sleep. These should work with both SGI pthreads // and sproc threads. They may be useful on other systems. template volatile unsigned long __default_alloc_template<__threads, __inst>::_S_node_allocator_lock = 0; #if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64)) || defined(__GNUC__) # define __test_and_set(l,v) test_and_set(l,v) #endif template void __default_alloc_template<__threads, __inst>:: _S_lock(volatile unsigned long* __lock) { const unsigned __low_spin_max = 30; // spins if we suspect uniprocessor const unsigned __high_spin_max = 1000; // spins for multiprocessor static unsigned __spin_max = __low_spin_max; unsigned __my_spin_max; static unsigned __last_spins = 0; unsigned __my_last_spins; unsigned __junk; # define __ALLOC_PAUSE \ __junk *= __junk; __junk *= __junk; __junk *= __junk; __junk *= __junk int __i; if (!__test_and_set((unsigned long*)__lock, 1)) { return; } __my_spin_max = __spin_max; __my_last_spins = __last_spins; for (__i = 0; __i < __my_spin_max; __i++) { if (__i < __my_last_spins/2 || *__lock) { __ALLOC_PAUSE; continue; } if (!__test_and_set((unsigned long*)__lock, 1)) { // got it! // Spinning worked. Thus we're probably not being scheduled // against the other process with which we were contending. // Thus it makes sense to spin longer the next time. __last_spins = __i; __spin_max = __high_spin_max; return; } } // We are probably being scheduled against the other process. Sleep. __spin_max = __low_spin_max; for (__i = 0 ;; ++__i) { struct timespec __ts; int __log_nsec = __i + 6; if (!__test_and_set((unsigned long *)__lock, 1)) { return; } if (__log_nsec > 27) __log_nsec = 27; /* Max sleep is 2**27nsec ~ 60msec */ __ts.tv_sec = 0; __ts.tv_nsec = 1 << __log_nsec; nanosleep(&__ts, 0); } } template inline void __default_alloc_template<__threads, __inst>::_S_unlock( volatile unsigned long* __lock) { # if defined(__GNUC__) && __mips >= 3 asm("sync"); *__lock = 0; # elif __mips >= 3 && (defined (_ABIN32) || defined(_ABI64)) __lock_release(__lock); # else *__lock = 0; // This is not sufficient on many multiprocessors, since // writes to protected variables and the lock may be reordered. # endif } #endif template char* __default_alloc_template<__threads, __inst>::_S_start_free = 0; template char* __default_alloc_template<__threads, __inst>::_S_end_free = 0; template size_t __default_alloc_template<__threads, __inst>::_S_heap_size = 0; template __default_alloc_template<__threads, __inst>::_Obj* __VOLATILE __default_alloc_template<__threads, __inst> ::_S_free_list[ # ifdef __SUNPRO_CC _NFREELISTS # else __default_alloc_template<__threads, __inst>::_NFREELISTS # endif ] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; // The 16 zeros are necessary to make version 4.1 of the SunPro // compiler happy. Otherwise it appears to allocate too little // space for the array. # ifdef __STL_WIN32THREADS // Create one to get critical section initialized. // We do this onece per file, but only the first constructor // does anything. static alloc __node_allocator_dummy_instance; # endif #endif /* ! __USE_MALLOC */ // This implements allocators as specified in the C++ standard. // // Note that standard-conforming allocators use many language features // that are not yet widely implemented. In particular, they rely on // member templates, partial specialization, partial ordering of function // templates, the typename keyword, and the use of the template keyword // to refer to a template member of a dependent type. #ifdef __STL_USE_STD_ALLOCATORS template class allocator { typedef alloc _Alloc; // The underlying allocator. public: typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; typedef const _Tp* const_pointer; typedef _Tp& reference; typedef const _Tp& const_reference; typedef _Tp value_type; template struct rebind { typedef allocator<_Tp1> other; }; allocator() __STL_NOTHROW {} allocator(const allocator&) __STL_NOTHROW {} template allocator(const allocator<_Tp1>&) __STL_NOTHROW {} ~allocator() __STL_NOTHROW {} pointer address(reference __x) const { return &__x; } const_pointer address(const_reference __x) const { return &__x; } // __n is permitted to be 0. The C++ standard says nothing about what // the return value is when __n == 0. _Tp* allocate(size_type __n, const void* = 0) { return __n != 0 ? static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp))) : 0; } // __p is not permitted to be a null pointer. void deallocate(pointer __p, size_type __n) { _Alloc::deallocate(__p, __n * sizeof(_Tp)); } size_type max_size() const __STL_NOTHROW { return size_t(-1) / sizeof(_Tp); } void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); } void destroy(pointer __p) { __p->~_Tp(); } }; template<> class allocator { typedef size_t size_type; typedef ptrdiff_t difference_type; typedef void* pointer; typedef const void* const_pointer; typedef void value_type; template struct rebind { typedef allocator<_Tp1> other; }; }; template inline bool operator==(const allocator<_T1>&, const allocator<_T2>&) { return true; } template inline bool operator!=(const allocator<_T1>&, const allocator<_T2>&) { return false; } // Allocator adaptor to turn an SGI-style allocator (e.g. alloc, malloc_alloc) // into a standard-conforming allocator. Note that this adaptor does // *not* assume that all objects of the underlying alloc class are // identical, nor does it assume that all of the underlying alloc's // member functions are static member functions. Note, also, that // __allocator<_Tp, alloc> is essentially the same thing as allocator<_Tp>. template struct __allocator { _Alloc __underlying_alloc; typedef size_t size_type; typedef ptrdiff_t difference_type; typedef _Tp* pointer; typedef const _Tp* const_pointer; typedef _Tp& reference; typedef const _Tp& const_reference; typedef _Tp value_type; template struct rebind { typedef __allocator<_Tp1, _Alloc> other; }; __allocator() __STL_NOTHROW {} __allocator(const __allocator& __a) __STL_NOTHROW : __underlying_alloc(__a.__underlying_alloc) {} template __allocator(const __allocator<_Tp1, _Alloc>& __a) __STL_NOTHROW : __underlying_alloc(__a.__underlying_alloc) {} ~__allocator() __STL_NOTHROW {} pointer address(reference __x) const { return &__x; } const_pointer address(const_reference __x) const { return &__x; } // __n is permitted to be 0. _Tp* allocate(size_type __n, const void* = 0) { return __n != 0 ? static_cast<_Tp*>(__underlying_alloc.allocate(__n * sizeof(_Tp))) : 0; } // __p is not permitted to be a null pointer. void deallocate(pointer __p, size_type __n) { __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); } size_type max_size() const __STL_NOTHROW { return size_t(-1) / sizeof(_Tp); } void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); } void destroy(pointer __p) { __p->~_Tp(); } }; template class __allocator { typedef size_t size_type; typedef ptrdiff_t difference_type; typedef void* pointer; typedef const void* const_pointer; typedef void value_type; template struct rebind { typedef __allocator<_Tp1, _Alloc> other; }; }; template inline bool operator==(const __allocator<_Tp, _Alloc>& __a1, const __allocator<_Tp, _Alloc>& __a2) { return __a1.__underlying_alloc == __a2.__underlying_alloc; } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template inline bool operator!=(const __allocator<_Tp, _Alloc>& __a1, const __allocator<_Tp, _Alloc>& __a2) { return __a1.__underlying_alloc != __a2.__underlying_alloc; } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ // Comparison operators for all of the predifined SGI-style allocators. // This ensures that __allocator (for example) will // work correctly. template inline bool operator==(const __malloc_alloc_template&, const __malloc_alloc_template&) { return true; } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template inline bool operator!=(const __malloc_alloc_template<__inst>&, const __malloc_alloc_template<__inst>&) { return false; } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ template inline bool operator==(const __default_alloc_template<__threads, __inst>&, const __default_alloc_template<__threads, __inst>&) { return true; } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template inline bool operator!=(const __default_alloc_template<__threads, __inst>&, const __default_alloc_template<__threads, __inst>&) { return false; } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ template inline bool operator==(const debug_alloc<_Alloc>&, const debug_alloc<_Alloc>&) { return true; } #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template inline bool operator!=(const debug_alloc<_Alloc>&, const debug_alloc<_Alloc>&) { return false; } #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ // Another allocator adaptor: _Alloc_traits. This serves two // purposes. First, make it possible to write containers that can use // either SGI-style allocators or standard-conforming allocator. // Second, provide a mechanism so that containers can query whether or // not the allocator has distinct instances. If not, the container // can avoid wasting a word of memory to store an empty object. // This adaptor uses partial specialization. The general case of // _Alloc_traits<_Tp, _Alloc> assumes that _Alloc is a // standard-conforming allocator, possibly with non-equal instances // and non-static members. (It still behaves correctly even if _Alloc // has static member and if all instances are equal. Refinements // affect performance, not correctness.) // There are always two members: allocator_type, which is a standard- // conforming allocator type for allocating objects of type _Tp, and // _S_instanceless, a static const member of type bool. If // _S_instanceless is true, this means that there is no difference // between any two instances of type allocator_type. Furthermore, if // _S_instanceless is true, then _Alloc_traits has one additional // member: _Alloc_type. This type encapsulates allocation and // deallocation of objects of type _Tp through a static interface; it // has two member functions, whose signatures are // static _Tp* allocate(size_t) // static void deallocate(_Tp*, size_t) // The fully general version. template struct _Alloc_traits { static const bool _S_instanceless = false; typedef typename _Allocator::__STL_TEMPLATE rebind<_Tp>::other allocator_type; }; template const bool _Alloc_traits<_Tp, _Allocator>::_S_instanceless; // The version for the default allocator. template struct _Alloc_traits<_Tp, allocator<_Tp1> > { static const bool _S_instanceless = true; typedef simple_alloc<_Tp, alloc> _Alloc_type; typedef allocator<_Tp> allocator_type; }; // Versions for the predefined SGI-style allocators. template struct _Alloc_traits<_Tp, __malloc_alloc_template<__inst> > { static const bool _S_instanceless = true; typedef simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type; typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type; }; template struct _Alloc_traits<_Tp, __default_alloc_template<__threads, __inst> > { static const bool _S_instanceless = true; typedef simple_alloc<_Tp, __default_alloc_template<__threads, __inst> > _Alloc_type; typedef __allocator<_Tp, __default_alloc_template<__threads, __inst> > allocator_type; }; template struct _Alloc_traits<_Tp, debug_alloc<_Alloc> > { static const bool _S_instanceless = true; typedef simple_alloc<_Tp, debug_alloc<_Alloc> > _Alloc_type; typedef __allocator<_Tp, debug_alloc<_Alloc> > allocator_type; }; // Versions for the __allocator adaptor used with the predefined // SGI-style allocators. template struct _Alloc_traits<_Tp, __allocator<_Tp1, __malloc_alloc_template<__inst> > > { static const bool _S_instanceless = true; typedef simple_alloc<_Tp, __malloc_alloc_template<__inst> > _Alloc_type; typedef __allocator<_Tp, __malloc_alloc_template<__inst> > allocator_type; }; template struct _Alloc_traits<_Tp, __allocator<_Tp1, __default_alloc_template<__thr, __inst> > > { static const bool _S_instanceless = true; typedef simple_alloc<_Tp, __default_alloc_template<__thr,__inst> > _Alloc_type; typedef __allocator<_Tp, __default_alloc_template<__thr,__inst> > allocator_type; }; template struct _Alloc_traits<_Tp, __allocator<_Tp1, debug_alloc<_Alloc> > > { static const bool _S_instanceless = true; typedef simple_alloc<_Tp, debug_alloc<_Alloc> > _Alloc_type; typedef __allocator<_Tp, debug_alloc<_Alloc> > allocator_type; }; #endif /* __STL_USE_STD_ALLOCATORS */ #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma reset woff 1174 #endif __STL_END_NAMESPACE #undef __PRIVATE #endif /* __SGI_STL_INTERNAL_ALLOC_H */ // Local Variables: // mode:C++ // End: