The Step by Step Plan
Table of Sines
sin( 0) = ???? sin( 5) = ???? sin( 10) = ????
sin( 15) = ???? sin( 20) = ???? sin( 25) = ????
sin( 30) = ???? sin( 35) = ???? sin( 40) = ????
sin( 45) = ???? sin( 50) = ???? sin( 55) = ????
sin( 60) = ???? sin( 65) = ???? sin( 70) = ????
sin( 75) = ???? sin( 80) = ???? sin( 85) = ????
sin( 90) = ???? sin( 95) = ???? sin(100) = ????
sin(105) = ???? sin(110) = ???? sin(115) = ????
sin(120) = ???? sin(125) = ???? sin(130) = ????
sin(135) = ???? sin(140) = ???? sin(145) = ????
sin(150) = ???? sin(155) = ???? sin(160) = ????
sin(165) = ???? sin(170) = ???? sin(175) = ????
sin(180) = ???? sin(185) = ???? sin(190) = ????
sin(195) = ???? sin(200) = ???? sin(205) = ????
sin(210) = ???? sin(215) = ???? sin(220) = ????
sin(225) = ???? sin(230) = ???? sin(235) = ????
sin(240) = ???? sin(245) = ???? sin(250) = ????
sin(255) = ???? sin(260) = ???? sin(265) = ????
sin(270) = ???? sin(275) = ???? sin(280) = ????
sin(285) = ???? sin(290) = ???? sin(295) = ????
sin(300) = ???? sin(305) = ???? sin(310) = ????
sin(315) = ???? sin(320) = ???? sin(325) = ????
sin(330) = ???? sin(335) = ???? sin(340) = ????
sin(345) = ???? sin(350) = ???? sin(355) = ????
sin(360) = ????
x - x*x*x/6 + x*x*x*x*x/120
where x is size of the angle in radians.
This is very roughly the sine of the angle, since it uses
only the first 3 terms of Taylor series.