
Section 3: Linear, Homogeneous
Recurrence Relations

• So far, we have seen that certain simple
recurrence relations can be solved merely by
interative evaluation and keen observation.

• In this section, we seek a more methodical
solution to recurrence relations.

• In particular, we shall introduce a general
technique to solve a broad class of recurrence
relations, which will encompass those of the last
section as well as the tougher Fibonnaci relation.
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Linear, Homogeneous Recurrence
Relations with Constant Coefficients
• If A and B (≠ 0) are constants, then a recurrence

relation of the form: ak = Aak−1 + Bak−2

is called a linear, homogeneous, second order,
recurrence relation with constant coefficients.

• We will use the acronym LHSORRCC.

• Linear: All exponents of the ak’s are 1;

• Homogeneous: All the terms have the same
exponent.

• Second order: ak depends on ak−1 and ak−2;
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Higher Order Linear, Homogeneous
Recurrence Relations

• If we let C1, C2, C3, ..., Cn be constants (Clast ≠ 0),
we can create LHRRCC’s of arbitrary order.

• As we shall see, the techniques the book develops
for second order relations generalizes nicely to
higher order recurrence relations.

• Third order: ak = C1ak−1 + C2ak−2 + C3ak−3

• Fourth order: ak = C1ak−1 + C2ak−2 + C3ak−3 + C4ak−4

• nth order: ak = C1ak−1 + C2ak−2 + ... + Cnak−n;
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Solving LHSORRCC’s
• Let’s start with the second order case before we

generalize to higher orders.

• Definition: Given ak = Aak−1 + Bak−2, the
characteristic equation of the recurrence relation
is x2 = Ax + B, and the characteristic polynomial
of the relation is x2 − Ax − B.

• Theorem: Given ak = Aak−1 + Bak−2, if s,t,C,D are
non-zero real numbers, with s ≠ t, and s,t satisfy
the characteristic equation of the relation, then its
General Solution is an = C(sn)+ D(tn).
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An Example
• Let ak = 5ak−1 − 6ak−2. Find the general solution.

• The relation has characteristic equation:
 x2 = 5x − 6,

so x2 − 5x + 6 = 0
hence (x − 2)(x − 3) = 0
implying either  (x − 2) = 0  or  (x − 3) = 0
thus x = 2,3

• General Solution is an = C(2n) + D(3n).
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Finding Particular Solutions
• Once we have found the general solution to a

recurrence relation, if we have a sufficient number
of initial conditions, we can find the particular
solution.

• This means we find the values for the arbitrary
constants C and D, so that the solution for the
recurrence relation takes on those initial
conditions.

• The required number of initial conditions is the
same as the order of the relation.
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An Example
• For the last example, we found the recurrence

relation ak = 5ak−1 − 6ak−2 has general solution
an = C(2n) + D(3n). Find the particular solution
when a0 = 9 and a1 = 20.

 a0 = C(20)+ D(30) = C + D = 9

 a1 = C(21)+ D(31) = 2C + 3D = 20, so

2C + 2D = 18

2C + 3D = 20, so D = 2 and C = 7.

Therefore, the particular solution is:
an = 7(2n) + 2(3n).
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Generalizing These Methods
• We can extend these techniques to higher order

LHRRCC quite naturally.  Suppose we have a
LHRRCC whose charateristic poylnomial has
roots x = 2, −3,5,7,11, and 13. Then its general
solution is:

an = C2n + D(−3)n + E5n + F7n + G11n + H13n.

• Moreover, if we have initial conditions specified
for a0, a1, a2, a3, a4, and a5, we can plug them into
the general solution and get a 6×6 system of
equations to solve for C, D, E, F, G, and H.
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Solving The Fibonacci Relation
• Solve: an = an−1 + an−2 when a0 = 1 and a1 = 1.

• Solution: In this case, the characteristic polynomial
is x2 − x − 1, which doesn’t factor nicely. We turn
to the quadratic formula to find the roots.

• Quadratic Formula: If ax2 + bx + c = 0, then
x = [−b ± √ (b2 − 4ac)]/2a.

• In our case, we have a = 1, b = −1 and c = −1, so
x = [−(−1) ± √((−1)2 − 4(1)(−1))]/2(1) = (1 ± √5)/2.

• Thus an = C[(1 + √5)/2]n + D[(1 − √5)/2]n.
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Solving The Fibonacci Relation (cont’d.)

• If we apply the initial conditions a0 = 1 and a1 = 1
to an = C[(1 + √5)/2]n + D[(1 − √5)/2]n, we get:

a0 = C + D = 1

a1 = [(1 + √5)/2]C + [(1 − √5)/2]D = 1, yielding

C = (1 + √5)/(2√5) and D = −(1 − √5)/(2√5).

• Therefore an = [(1 + √5)/(2√5)][(1 + √5)/2]n +
[−(1 − √5)/(2√5)][(1 − √5)/2]n

• This simplifies to
an = (1/√5){[(1 + √5)/2]n+1 − [(1 − √5)/2]n+1
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Single Root Case
• So far, our technique for solving LHSORRCCs

has depended on the fact that the two roots of the
characteristic polynomial are distinct.

• This is not always the case, however. We can find
that a polynomial has only one root, s, whenever
the polynomial factors as (x − s)2.

• In this case, our solution takes on a special variant
to ensure “linear independence” of the solutions.

• Theorem: If an LHSORRCC has a repeated root s,
then the general solution is an = (A + Bn)sn.
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Single Root Case Example
• Find the general solution of an − 6an−1 + 9an−2 = 0.

• This LHSORRCC has a characteristic polynomial
equation of x2 − 6x + 9 = 0, so (x − 3)2 = 0, which
yields the sole root x = 3.

• Therefore, the general solution is an = (A + Bn)3n.

• If we add initial conditions a0 = 2 and a1 = 21, we
get: a0 = (A + B(0))30 = A = 2, and

 a1 = (A + B(1))31 = 3(A + B) = 3(2 + B) = 21,
so 2 + B = 7, hence B = 5.

• Therefore the particular solution is an = (2 + 5n)3n
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Higher Order Repeated Root Case
• This method of building up the “coefficient” when

the variable part degenerates because of repeated
roots extends nicely to higher order problems as
well.

• Example: If a LHRRCC has characteristic
polynomial with roots x = 7,7,7,7,7,7,7,9,9,9 then
its general solution is:

• an = (A + Bn + Cn2 + Dn3 + En4 + Fn5 + Gn6)7n

+ (H + In + Jn2)9n.

• How many IC are needed for a particular solution?
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Summary
• Our general technique for solving LHRRCCs is a

two-step process.

• Step 1: Find the roots of the characteristic
polynomial and use them to develop the general
solution.

How do I find roots of polynomials?

• Step 2: Use the initial conditions to make and
solve a system of linear equations that determine
the arbitrary constants in the general solution to
get the particular solution.

How do I solve systems of linear equations?
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Board Example #1
• Given the recurrence relation an = 4an−1 − 3an−2,

find a999 when a0 = 5 and a1 = 7.
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Board Example #2
• Given the recurrence relation an = 4an−1 − 4an−2,

find a999 when a0 = 5 and a1 = 7.
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Board Example #3
• What is the general solution for the LHRRCC

whose characteristic polynomial is:
(x + 5)6(x − 3)4(x + 8)2
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Board Example #4
• Given the LHRRCC an = 2an−1 + 5an−2 − 6an−3, find

a999 when a0 = 17, a1 = 14, and a2 = 110.
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Validity of the General Solution I
Prove: If Aan + Ban−1 + Can−2 = 0, and s ≠ t satisfy

Ax2 + Bx + C = 0, then ak = Msk + Ntk satisfies the
relation.

Proof: Let Aan + Ban−1 + Can−2 = 0, and s ≠ t satisfy
Ax2 + Bx + C = 0. Thus:

As2 + Bs + C = At2 + Bt + C = 0.

Now, an = Msn + Ntn, an−1 = Msn−1 + Ntn−1, and
an−2 = Msn−2 + Ntn−2 hence Aan + Ban−1 + Can−2

= A(Msn + Ntn) + B(Msn−1 + Ntn−1) + C(Msn−2 + Ntn−2)

= M(Asn + Bsn−1 + Csn−2) + N(Atn + Btn−1 + Ctn−2)

= Msn−2(As2 + Bs + C) + Ntn−2(At2 + Btn−1 + C) = 0.QED
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Validity of the General Solution II
Prove: If Aan + Ban−1 + Can−2 = 0, and s is the only

solution of Ax2 + Bx + C = 0, then ak = (P + Qk)sk

satisfies the relation.

Proof: Let Aan + Ban−1 + Can−2 = 0, and s be the only
solution of Ax2 + Bx + C = 0, so As2 + Bs + C  = 0.

Now, an = (P + Qn)sn, an−1 = [P + Q(n−1)]sn−1, and
an−2 = [P + Q(n−2)]sn−2 hence Aan + Ban−1 + Can−2

= A(P + Qn)sn + B[P + Q(n−1)]sn−1

+ C[P + Q(n−2)]sn−2

= P(Asn + Bsn−1 + Csn−2)
+ Q[Ansn + B(n−1)sn−1 + C(n−2)sn−2]
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Validity of the General Solution II
Thus, Aan + Ban−1 + Can−2

= Psn−2(As2 + Bs + C) + Q(Ansn + Bnsn−1 − Bsn−1

+ Cnsn−2 − 2Csn−2)

= Qnsn−2(As2 + Bs + C ) + Qsn−2(−Bs − 2C)

= Qsn−2(−Bs − 2C) = 0?????

However, since s is the only root of the characteristic
polynomial, from the Quadratic Formula, we have
that (B2 − 4AC) = 0 and s = −B/2A.

Thus (−Bs − 2C) = −B(−B/2A) − 2C
= B2/2A − 2C(2A/2A) = (B2 − 4AC)/2A = 0. QED
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