
Introduction
CMSC 341, Park

• Why are you here?!?!

• What are data structures?

• Layout of course info—mostly web pages
/userpages.umbc.edu/~park/cs341.f18/

Schedule, HWs and projects, exams, staff info, lecture
notes

• We will be following book closely
• Be sure to read before you arrive in class

• Not teaching programming: teaching how to think

Textbook

• Data Structures and Algorithms in C++
• 2nd Edition

• Goodrich, Tamassia, and Mount

• ISBN-13: 978-0-470-46044-3

• ISBN-10: 0470383275

• Publisher: Wiley

• Copyright: 2011

UMBC CMSC 341 Intro 3

Student Honor Code
UMBC Student Honor Code

By enrolling in this course, each student assumes the responsibilities of an
active participant in UMBC's scholarly community in which everyone's
academic work and behavior are held to the highest standards of honesty.
Cheating, fabrication, plagiarism, and helping others to commit these acts are
all forms of academic dishonesty, and they are wrong. Academic misconduct
could result in disciplinary action that may include, but is not limited to,
suspension or dismissal.

To read the full Student Academic Conduct Policy, consult the UMBC Student
Handbook, the Faculty Handbook, or the UMBC Policies section of the UMBC
Directory.

http://www.umbc.edu/provost/integrity/index.html

UMBC CMSC 341 Intro 4

Prerequisites

• 202:
• Classes: design and use

• STL

• Overloading, overriding

• Debugging

• 203:
• Proof by induction

• Permutations and combinations

Topics Covered in This Course
• Linear data structures:

• Lists, Stacks, Queues

• Trees
• BST, Red-Black Tree, AVL Tree, Priority Queue

• Lists masquerading as trees

• Trees masquerading as lists

• Graphs and Disjoint Sets

• Hashing

UMBC CMSC 341 Intro 6

Data Structures

• What is a “data structure” anyway?
• A data structure is a systematic way of both

organizing and accessing data

• What are some types of data structures?
• Lists, arrays, records (like tuples and structs),

linked lists, matrices, and also things like images

• How do you choose which one to use?
• Efficiency – adding, finding, and organizing data

UMBC CMSC 341 Intro 7

Abstract Data Types
• What is an ADT?

• A mathematical model of a data structure that specifies how
it behaves: type of data stored, allowed operations, and
operation behavior.

• How are ADTs different from data structures?
• ADTs are the “what” and data structures the “how”

• ADTs can be viewed from a user’s point of view, data
structures from an implementer’s view

UMBC CMSC 341 Intro 8

Miscellaneous

• Tools/IDEs
• Emacs, Eclipse, Visual Studio

• However, final test must be on GL

• Project & HW submissions

• Make

Course Tools – Running on GL
• You may use any IDE to develop your code

• Your program MUST run (correctly) on GL in order to
get credit
• Make sure you test it on GL before submitting

• If it runs on your machine, but not on GL…

• It doesn’t run for us, so it doesn’t count 

UMBC CMSC 341 Intro 10

Make

• Make
• Basic structure: rule = target/dependencies/actions

(sometimes called “target/prerequisites/recipes”)

• Dependency recursion

• Default rules, helper rules

• Implicit rules

• Variables/macros

Why Even Use “make”?

• Compiling, linking, and executing become…

• Easier

• Quicker (more efficient)

• Less prone to human error

• Also allows us to create and run helper rules
• Clean up unneeded files (like hw2.cpp~)

• Laziness (but efficiently lazy)

UMBC CMSC 341 Makefiles 12

Makefiles
• A makefile is a list of rules that can be called directly

from the terminal

• best if called Makefile or makefile

• Rules have three parts
• Target – name of object or executable to create

• Dependencies – what Target depends on

• Actions – list of actions to create the Target

UMBC CMSC 341 Makefiles 13

Makefile Rule Example

Inher.o: Inher.cpp Inher.h

g++ -ansi -Wall -c Inher.cpp

UMBC CMSC 341 Makefiles 14

Target

The file to create. In this

case an object file: Inher.o

Dependencies

The files that are required to

create the object file. In this case

Inher.cpp and Inher.h

<TAB>

Used to signal what

follows as an action

(do not use spaces!)

Actions

What needs to be done to create

the target. In this case it is the

separate compilation of Inher.cpp

Efficiency of make

• make only recompiles files that need to be
• Files that have been modified or updated

• Files that depend on modified/updated files

• Compares the timestamp of the dependency list
items to that of the target
• If a source is newer than the object file, the object file

needs to be recompiled

• Likewise if an object file is newer than the executable it
needs to be re-linked

UMBC CMSC 341 Makefiles 15

Example Makefile
Project1.out: Project1.o Inventory.o Cd.o Date.o

g++ -Wall -o Project1.out Project1.o Inventory.o Cd.o Date.o

Project1.o: Project1.c Inventory.h

g++ -Wall -c Project1.c

Inventory.o: Inventory.c Inventory.h Cd.h

g++ -Wall -c Inventory.c

Cd.o: Cd.c Cd.h Date.h

g++ -Wall -c Cd.c

Date.o: Date.c Date.h

g++ -Wall -c Date.c

UMBC CMSC 341 Makefiles 16

Specifying a Target

• To call a specific rule or create a specific target, use
make <TARGET>

• The first target in the file is the “default target”
• Omitting the target (i.e., typing just “make”)

will create the default target

UMBC CMSC 341 Makefiles 17

Dependency Graph

• A file may depend on one or more other files
• Need to ensure correct compilation order

• Create a dependency graph, with the end
goal of a executable named “main”

UMBC CMSC 341 Makefiles 18

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

Our files:
main.cpp

Point.h Point.cpp

Rectangle.h Rectangle.cpp

• The “main” executable is generated from 3 object files:
main.o Point.o Rectangle.o

• “main” depends on these files

• Explicitly creating .o files is more efficient

• Files are linked together to create “main”

Dependency Graph – Linking

UMBC CMSC 341 Makefiles 19

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

Point.o Rectangle.omain.o

main

• Each of the object files depends on a corresponding
.cpp file

• Object files are generated by compiling the
corresponding .cpp files

Dependency Graph – Compiling

UMBC CMSC 341 Makefiles 20

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

Point.cpp

Point.o Rectangle.o

Rectangle.cppmain.cpp

main.o

• Many source code files (.cpp and .h files) depend on
included header files

• May also be indirect includes; for example

Rectangle.cpp includes Point.h through Rectangle.h

Dependency Graph – Includes

UMBC CMSC 341 Makefiles 21

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

Point.cpp

Point.h

Rectangle.h

Rectangle.cppmain.cpp

Full Dependency Graph

UMBC CMSC 341 Makefiles 22

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

Point.cpp

Point.h

Point.o Rectangle.o

Rectangle.h

Rectangle.cppmain.cpp

main.o

main

Link

Include

Compile

Depends

on

Actual Dependency Graph

UMBC CMSC 341 Makefiles 23

Source: https://www.cs.bu.edu/teaching/cpp/writing-makefiles/

Point.cpp

Point.h

Point.o Rectangle.o

Rectangle.h

Rectangle.cppmain.cpp

main.o

main

Link

Include

Compile

Depends

on

Makefile Variables

• Similar to an alias or a #define
• Use when you need something over and over

• Syntax to define a variable:

PROJ = Proj1

CC = g++

UMBC CMSC 341 Makefiles 24

Variable name Content

Substituted for variable

in rest of file

Variable Use Examples

UMBC CMSC 341 Makefiles 25

DIR1 = /afs/umbc.edu/users/k/k/k38/pub/CMSC341/Proj1/

PROJ = Proj1

CC = g++

CCFLAGS = -g -ansi -Wall -I . -I $(DIR1)

OBJECTS = Project1.o Inventory.o Cd.o Date.o

Notice that we can use

one variable in definition

of another

(declaration order matters)

Using Variables

• To access a macro, use the following format:

$(VARIABLE_NAME)

• What do each of these rules actually mean?
• (In plain English)

UMBC CMSC 341 Makefiles 26

$(PROJ): $(OBJECTS)

$(CC) $(CCFLAGS) -o $(PROJ) $(OBJECTS)

Project1.o: Project1.c Inventory.h

$(CC) $(CCFLAGS) -c Project1.c

Helper Rules

• You can specify targets that do auxiliary tasks and
do not actually compile code
• Remove object and executable files

• Print source code

• Submit all code

• Timestamps don’t matter for these tasks
• Good practice to let the makefile know that

• These target are called “phony” targets

UMBC CMSC 341 Makefiles 27

Phony Targets
• Same syntax, but preceded by a .PHONY declaration

on the previous line

.PHONY: submit

submit:

submit cs341 $(PROJ) $(SOURCES) \

Makefile *.txt

UMBC CMSC 341 Makefiles 28

Same as

target name

Use a backslash to

continue action on

more than one line

More Helper Rules

• Cleaning utilities
clean:

-rm -f *# *~

cleaner: clean

-rm -f *.o

cleanest: cleaner

-rm -f core*; rm -f $(PROJ)

UMBC CMSC 341 Makefiles 29

Implicit Rules

• Pattern-based: convert any file of type X to type Y
• Type implied by filename extension (e.g.: .o from .c)

• Example:

%.o : %.c

$(CC) -c $(CFLAGS) $(CPPFLAGS) $< -o $@

• If multiple implicit rule patterns match, tries each in
sequence, based on existence of dependencies

• Search is recursive, chained

31

PROJ = Proj1

CC = g++

CCFLAGS = -g -ansi –Wall

SOURCES = $(PROJ).c Inventory.h Inventory.c Cd.h Cd.c Date.h Date.c

OBJECTS = $(PROJ).o Inventory.o Cd.o Date.o

$(PROJ): $OBJECTS

$(CC) $(CCFLAGS) -o $(PROJ) $(OBJECTS)

$(PROJ).o: $(PROJ).c Inventory.h

$(CC) $(CCFLAGS) -c $(PROJ).c

Inventory.o: Inventory.c Inventory.h Cd.h

$(CC) $(CCFLAGS) -c Inventory.c

Cd.o: Cd.c Cd.h Date.h

$(CC) $(CCFLAGS) -c Cd.c

Date.o: Date.c Date.h

$(CC) $(CCFLAGS) -c Date.c

.PHONY: submit

submit:

submit cs341 $(PROJ) $(SOURCES) Makefile *.txt

.PHONY: print

Print:

enscript -G2rE $(SOURCES) Makefile *.txt

Advanced Makefile

